期刊文献+

Thermo-controllable self-assembled structures of single-layer 4,4"-diamino-p-terphenyl molecules on Au(110)

Thermo-controllable self-assembled structures of single-layer 4,4''-diamino-p-terphenyl molecules on Au(110)
下载PDF
导出
摘要 Here we report the thermo-controllable self-assembled structures of single-layer 4, 4''-diamino-p-terphenyl(DAT)molecules on Au(110), which are investigated by scanning tunneling microscopy(STM) combined with density functional theory(DFT) based calculations. With the deposition of monolayer DAT molecules on Au(110) and subsequent annealing at 100℃, all DAT molecules adsorb on a(1×5) reconstructed surface with a ladder-like structure. After annealing the sample at about 200℃, STM images show three distinct domains, including DAT molecules on a(1×3) reconstructed surface, dehydrogenated molecules with two hydrogen atoms detached from one amino group(–2H-DAT) on a(1×5)reconstructed surface and dehydrogenated molecules with four hydrogen atoms detached from two amino groups(–4HDAT) on a(1×3) reconstructed surface through N–Au bonds. Furthermore, after annealing the sample to 350℃, STM image shows only one self-assembled structure with –4H-DAT molecules on a(1×3) reconstructed surface. Relative STM simulations of different self-assembled structures show excellent agreements with the experimental STM images at different annealing temperatures. Further DFT calculations on the dehydrogenation process of DAT molecule prove that the dehydrogenation barrier on a(1×5) reconstructed surface is lower than that on(1×3) one, which demonstrate the experimental results that the formation temperature of a(1×3) reconstructed surface is higher than that of a(1×5) one. Here we report the thermo-controllable self-assembled structures of single-layer 4, 4''-diamino-p-terphenyl(DAT)molecules on Au(110), which are investigated by scanning tunneling microscopy(STM) combined with density functional theory(DFT) based calculations. With the deposition of monolayer DAT molecules on Au(110) and subsequent annealing at 100℃, all DAT molecules adsorb on a(1×5) reconstructed surface with a ladder-like structure. After annealing the sample at about 200℃, STM images show three distinct domains, including DAT molecules on a(1×3) reconstructed surface, dehydrogenated molecules with two hydrogen atoms detached from one amino group(–2H-DAT) on a(1×5)reconstructed surface and dehydrogenated molecules with four hydrogen atoms detached from two amino groups(–4HDAT) on a(1×3) reconstructed surface through N–Au bonds. Furthermore, after annealing the sample to 350℃, STM image shows only one self-assembled structure with –4H-DAT molecules on a(1×3) reconstructed surface. Relative STM simulations of different self-assembled structures show excellent agreements with the experimental STM images at different annealing temperatures. Further DFT calculations on the dehydrogenation process of DAT molecule prove that the dehydrogenation barrier on a(1×5) reconstructed surface is lower than that on(1×3) one, which demonstrate the experimental results that the formation temperature of a(1×3) reconstructed surface is higher than that of a(1×5) one.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期361-365,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.61390501,61471337,61622116,and 51325204) the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ1203451) the CAS Hundred Talents Program,the Transregional Collaborative Research Center TRR 61(Grant No.21661132006) the National Supercomputing Center in Tianjin.A portion of the research was performed in CAS Key Laboratory of Vacuum Physics
关键词 self-assembled structures Au (110) surface surface reconstruction DEHYDROGENATION self-assembled structures, Au (110) surface, surface reconstruction, dehydrogenation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部