期刊文献+

Modulating the properties of monolayer C2N:A promising metal-free photocatalyst for water splitting

Modulating the properties of monolayer C_2N: A promising metal-free photocatalyst for water splitting
下载PDF
导出
摘要 Photocatalytic water splitting has gained increasing attention, since it utilizes renewable resources, such as water and solar energy, to produce hydrogen. Using the first-principles density functional theory, we investigate the properties of the single layer C_2N which was successfully synthesized. We reveal that monolayer C_2N has a substantial direct band gap of 2.45 eV. To regulate its band gap, four different nonmetal elements(B, O, P, and S) on the cation and anion sites are considered. Among them, B-doped N site is the most effective one, with the lowest formation energy and a band gap of 2.01 eV. P-doped N site is the next, with a band gap of 2.08 eV, though its formation energy is higher. The band alignments with respect to the water redox levels show that, for these two dopings, the thermodynamic criterion for the overall water splitting is satisfied. We therefore predict that B-or P-doped C_2N, with an appropriate band gap and an optimal band-edge position, would be a promising photocatalyst for visible-light water splitting. Photocatalytic water splitting has gained increasing attention, since it utilizes renewable resources, such as water and solar energy, to produce hydrogen. Using the first-principles density functional theory, we investigate the properties of the single layer C_2N which was successfully synthesized. We reveal that monolayer C_2N has a substantial direct band gap of 2.45 eV. To regulate its band gap, four different nonmetal elements(B, O, P, and S) on the cation and anion sites are considered. Among them, B-doped N site is the most effective one, with the lowest formation energy and a band gap of 2.01 eV. P-doped N site is the next, with a band gap of 2.08 eV, though its formation energy is higher. The band alignments with respect to the water redox levels show that, for these two dopings, the thermodynamic criterion for the overall water splitting is satisfied. We therefore predict that B-or P-doped C_2N, with an appropriate band gap and an optimal band-edge position, would be a promising photocatalyst for visible-light water splitting.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期390-394,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.11574167)
关键词 C2N metal-free photocatalyst water splitting DOPING first-principle calculation C2N, metal-free photocatalyst, water splitting, doping, first-principle calculation

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部