期刊文献+

基于LDA和本体的科学前沿识别与分析方法研究 被引量:26

Research on the Method of Detecting and Analyzing Scientific Fronts Based on LDA and Ontology
下载PDF
导出
摘要 [目的/意义]鉴于及时准确把握科学前沿的重要意义,文章针对目前科学前沿识别方法存在的问题,提出基于LDA和本体的科学前沿识别及分析方法。[方法/过程]通过LDA模型抽取研究主题,采用主题强度和主题新颖度两个指标来识别科学前沿主题,并基于领域本体进行概念映射来挖掘科学前沿主题的语义类型,从而实现科学前沿的语义分析。[结果/结论]基于LDA模型抽取的10个研究主题中,确定了4个科学前沿。该方法在科学前沿主题的表示方面,主题识别的方法和结果的语义分析方面都有一定的改进。 [Purpose/significance] Given the necessity of timely and accurate identification of scientific fronts,this paper proposes a method of scientific fronts detection and semantic analysis based on LDA model and domain ontology. [Method/process]LDA model is applied to extract research topics form documents,and topic intensity and topic novelty are used as indicators to recognize scientific front topics. To realize the semantic analysis of research fronts,domain ontology is used to map the semantic types of topics. [Result/conclusion] Four research fronts are obtained form the 10 extracted research topics based on LDA. This method can effectively improve the performance of the topic representation,recognition and semantic analysis.
作者 冯佳 张云秋
出处 《情报理论与实践》 CSSCI 北大核心 2017年第8期49-54,共6页 Information Studies:Theory & Application
基金 吉林省科技发展计划专利推进项目"基于核心专利的吉林省中药产业技术热点监测与技术预测研究"的成果之一 项目编号:20160312011ZG
关键词 科学前沿 主题模型 语义分析 LDA模型 scientific fronts topic model semantic analysis LDA model
  • 相关文献

参考文献10

二级参考文献133

共引文献267

同被引文献323

引证文献26

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部