期刊文献+

Toxicity threshold of lead(Pb) to nitrifying microorganisms in soils determined by substrate-induced nitrification assay and prediction model 被引量:2

Toxicity threshold of lead(Pb) to nitrifying microorganisms in soils determined by substrate-induced nitrification assay and prediction model
下载PDF
导出
摘要 Lead (Pb) contamination has often been recorded in Chinese field soils. In recent years, efforts have been made to inves- tigate Pb toxicity thresholds in soils with plant growth and microbial assays. However, the influence of soil properties on Pb toxicity impacts on soil microbial processes is poorly understood. In this study ten soils with different properties were collected in China to investigate the relationships between thresholds of Pb toxicity to soil microbes and soil properties. The effect of soil leaching on Pb toxicity was also investigated to determine the possible influence of added anions on Pb toxicity during dose-response tests. Toxicity was inferred by measuring substrate-induced nitrification in leached and non-leached soils after Pb addition. We found that soil microbe Pb toxicity thresholds (ECx, x=10, 50) differed significantly between the soils; the 10% inhibition ratio values (ECI0) ranged from 86 to 218 mg kg-1 in non-leached soils and from 101 to 313 mg kg in leached soils. The 50% inhibition ratio values (EC50) ranged from 403 to 969 mg kg^-1 in non-leached soils and from 494 to 1 603 mg kg^-1 in leached soils. Soil leaching increased EC50 and EC50 values by an average leaching factor (LF) of 1.46 and 1.33, respectively. Stepwise multiple regression models predicting Pb toxicity to soil microbes were developed based on ECx and soil properties. Based on these models, soil pH and organic carbon are the most important soil properties af- fecting Pb toxicity thresholds (R2〉0.60). The quantitative relationship between Pb toxicity and soil properties will be helpful for developing soil-specific guidance on Pb toxicity thresholds in Chinese field soils. Lead (Pb) contamination has often been recorded in Chinese field soils. In recent years, efforts have been made to inves- tigate Pb toxicity thresholds in soils with plant growth and microbial assays. However, the influence of soil properties on Pb toxicity impacts on soil microbial processes is poorly understood. In this study ten soils with different properties were collected in China to investigate the relationships between thresholds of Pb toxicity to soil microbes and soil properties. The effect of soil leaching on Pb toxicity was also investigated to determine the possible influence of added anions on Pb toxicity during dose-response tests. Toxicity was inferred by measuring substrate-induced nitrification in leached and non-leached soils after Pb addition. We found that soil microbe Pb toxicity thresholds (ECx, x=10, 50) differed significantly between the soils; the 10% inhibition ratio values (ECI0) ranged from 86 to 218 mg kg-1 in non-leached soils and from 101 to 313 mg kg in leached soils. The 50% inhibition ratio values (EC50) ranged from 403 to 969 mg kg^-1 in non-leached soils and from 494 to 1 603 mg kg^-1 in leached soils. Soil leaching increased EC50 and EC50 values by an average leaching factor (LF) of 1.46 and 1.33, respectively. Stepwise multiple regression models predicting Pb toxicity to soil microbes were developed based on ECx and soil properties. Based on these models, soil pH and organic carbon are the most important soil properties af- fecting Pb toxicity thresholds (R2〉0.60). The quantitative relationship between Pb toxicity and soil properties will be helpful for developing soil-specific guidance on Pb toxicity thresholds in Chinese field soils.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第8期1832-1840,共9页 农业科学学报(英文版)
基金 financially supported by the National Key Research and Development Program of China (2016YDF0800707) the National Key Technology R&D Program of China (2015BAD05B03) the National Natural Science Foundation of China (41271490)
关键词 DOSE-RESPONSE lead (Pb) polluted soil substrate-induced nitrification dose-response, lead (Pb), polluted soil, substrate-induced nitrification
  • 相关文献

同被引文献40

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部