期刊文献+

基于联合直方图的红外与可见光目标融合跟踪 被引量:1

Tracking Infrared-visible Target with Joint Histogram
下载PDF
导出
摘要 针对传统单核跟踪算法只能单独跟踪红外或可见光运动目标,导致目标的跟踪效果不是很理想,甚至跟踪失败的问题,本文提出了一种基于均值漂移的红外与可见光目标融合跟踪算法。该算法仍以直方图为目标表示模型,通过将红外目标的相似度和可见光目标的相似度进行加权融合,来构建新的目标函数,并依据核跟踪推理机制导出目标的联动位移公式;最后使用均值漂移程序实现目标的自动搜索。多个视频序列对的测试结果表明,本文提出的融合跟踪方法在处理场景拥簇、光照变化等方面要优于传统的单源跟踪方法,同时具有较高的实时性。 Due to traditional kernel tracking algorithm can only track infrared or visible target,its performance is poor,even unsuccessful.This paper proposes a fusion tracking method for infraredvisible target by using a mean shift algorithm.Firstly,the histogram is still adopted to represent the infrared target and visible target,and the similarity between infrared candidate and its target,and the similarity between visible candidate and its target,are integrated into a novel objective function with different weight.Secondly,similar to mean shift on the objective function,ajoint target location-shift formula is induced to the new method.Finally,the optimal target location is gained recursively by applying the mean shift procedure.Experimental results of several infrared-visible image sequences demonstrate that the proposed fusion algorithm is superior to the single-sensor tracking algorithm in handling illumination change and background clutter.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2017年第3期37-44,共8页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(61365009 61462008 61663004) 广西自然科学基金(2014GXNSFAA118368 2013GXNSFAA019336 2016GXNSFAA380146) 广西师范大学博士科研启动基金(师政科技[2015]13号) 广西信息科学实验室中心经费资助课题
关键词 均值漂移 直方图 融合跟踪 红外与可见光 相似度 mean shift histogram fusion tracking infrared-visible similarity
  • 相关文献

参考文献6

二级参考文献48

  • 1XUE Jianru ZHENG Nanning ZHONG Xiaopin.Sequential stratified sampling belief propagation for multiple targets tracking[J].Science in China(Series F),2006,49(1):48-62. 被引量:6
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3刘从义,敬忠良,肖刚,杨波.Feature-based fusion of infrared and visible dynamic images using target detection[J].Chinese Optics Letters,2007,5(5):274-277. 被引量:5
  • 4Brasnett P,Mihaylova L,Bull D, et al.Sequential Monte Carlo tracking by fusing multiple cues in video sequences. Image and Vision Computing . 2007
  • 5Nummiaro K,Koller-Meier E,Van Gool L.An adaptive color-based particle filter. Image and Vision Computing . 2003
  • 6Collins RT,Liu YX,Leordeanu M.Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2005
  • 7Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
  • 8Dorin Comaniciu,Peter Meer.Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
  • 9D. Comaniciu,V. Ramesh,P. Meer.Kernel-based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2003
  • 10Perez P,Vermaak J,Blake A.Data fusion for visual tracking with particles. Proceedings of Tricomm . 2004

共引文献59

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部