期刊文献+

基于多样字典理论与多尺度距离度量的彩色图像检索 被引量:2

The color image retrieval algorithm based on multiple dictionary theory and multi-scale distance measure
下载PDF
导出
摘要 针对在图像检索中因色彩因素导致的相关算法正确率低、稳定性差等问题,提出了一种多样字典理论与多尺度距离度量的彩色图像检索算法.首先,对输入图像进行量化,将其转换为一维字符串形式;其次,采用多样字典统计对图像视觉模式编码,并计算编码后的图像特征值;最后,给出多尺度距离的相似度量准则,并根据该准则对查询图像与数据库图像的特征值进行处理,寻找与其匹配的特征图像.实验结果表明:本文所提出的算法在查准率与查全率上要优于当前流行的检索方法,其对彩色图像的检索精度和稳定性也有了明显提高,因此具有较好的应用价值. A new color image retrieval algorithm based on the theory of multiple dictionaries and multi-scale distance measure was proposed to improve the low accuracy and instability which are the problems caused by color factor.Firstly,quantifying the input image and converting it to a string form;secondly,encoding the image visual pattern by calculating the multi-dictionaries,and then evaluating encoded image feature value.Finally,this paper presents a similarity metric for multi-scale distance.According to the criterion,the characteristic values of the query image and the database image are processed,and then a matching image is found to complete the search task.Experimental results shows that this algorithm proposed in this paper was superior to the current popular methods in precision and recall level and the accuracy and stability of the color image retrieval has been significantly improved.Therefore,the algorithm has good application value.
作者 梁晨 LIANG Chen(Institute of Information Science and Engineering, Qilu Normal University, Jinan 250200, Chin)
出处 《延边大学学报(自然科学版)》 CAS 2017年第2期167-172,178,共7页 Journal of Yanbian University(Natural Science Edition)
关键词 图像检索 多样字典理论 多尺度距离度量 色彩干扰 image retrieval multiple dictionary theory multiple distance measure color interference
  • 相关文献

参考文献5

二级参考文献62

  • 1Mittal A, Paragios N. Motion-based background subtraction using adaptive kernel density estimation [C]// IEEE Conference on Computer Vision and Pattern Recognition Washington: IEEE Press, 2004, 2 : 302-309.
  • 2Toyama K, Krumm J, Brumitt B, et al. Wallflower: principles and practice of background maintenance [C]// Proceedings of 7th International Conference on Computer Vision. Corfu, Greece: IEEE Press, 1999, 1: 255-261.
  • 3Zhang E W, Chen F, Zhang W D. A novel particle filter based background subtraction method [C]// Proceedings of the International Conference on Computational Intelligence and Security. Guangzhou. China: IEEE Press, 2006, 2:1 837-1 840.
  • 4Li Y M, Xu L Q, Morphett J, et al. An integrated algorithm of incremental and robust pca [C]// Proceedings of IEEE International Conference on Image Processing. Cairo, Egypt: IEEE Press, 2003: 245-248.
  • 5Stauffer C, Crimson W E L. Adaptive background mixture models for real-time tracking [C ]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Collins, USA: IEEE Computer Society, 1999, 2: 246-252.
  • 6Elgarnmal A, Harwood D, Davis L. Non-parametric model for background subtraction[C]//Proceedings of the 6th European Conference on Computer Vision-Part II. Berlin: Springer, 2000, 1843: 751-767.
  • 7Kim K, Chalidabhongse T H, Harwood D, et al. Background modeling and subtraction by codebook construction [C]// Proceedings of the International Conference on Image Processing. Singapore: IEEE Press, 2004, 5:3 061-3 064.
  • 8Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662.
  • 9Ojala T, Pietik inen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-987.
  • 10Heikkila M, Pietikainen M, Schmid C. Description of interest regions with center-symmetric local binary patterns[C]// Proceedings of the 5th Conference on Computer Vision, Graphics and Image Processing. Madurai, India: IEEE Press, 2006, 4338: 58-69.

共引文献48

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部