期刊文献+

基于同类测试样本组的稀疏表示人脸识别

Sparse Representation Classification for Face Recognition with Intra-class Testing-sample Group
下载PDF
导出
摘要 近年来的研究表明,稀疏表示分类(SRC)方法是一种有效的人脸识别方法。SRC是单个样本基于向量l1-范数正则化的最小二乘分类。但现实中常常存在着已知多个测试样本属于同一类的情况,无疑有利于分类,而基于SRC或其他单样本模型的方法却未能利用该信息。为利用类别标签信息,提出了一种新的鲁棒人脸识别方法。该方法基于同类测试样本组的稀疏表示分类(IGSRC),即将同类多个测试样本放至同组,采用矩阵L1-范数正则化的最小二乘分类进行稀疏表示,将测试样本组判为类别中残差最小的标号。实验结果表明,相比于SRC与IGSRC方法,所提出的方法不但能取得更高的人脸识别率(即使在每类别训练样本数较少、训练样本存在部分遮挡),而且具有更少的计算耗时。 Recent studies have shown that Sparse Representation Classification (SRC) is an effective method for face recognition. SRC is a least squares classification based on l1 - norm regularized for a single testing-sample. However,in the case that multiple testing-sam- ples are known to be die same class which is surely helpful in the classification,the common-class label information is not included in SRC or other single-sample models. Therefore, a novel robust face recognition method based on sparse representation classification is pro- posed which is on the basis of IGSRC. Taking multiple intra-class testing-samples into the same group, it adopts the matrix L1 - norm regularized least squares classification for sparse representation and judges the test sample group as the label with minimum error in clas- ses. Experimental results show that compared with IRC and IGSRC, the method proposed cannot only obtain better face recognition rate (even when the number of training samples per subject is small or training samples are partly occluded) ,also own less running time.
出处 《计算机技术与发展》 2017年第8期7-11,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(11471159 61661136001) 南京航空航天大学研究生创新开放基金(kfjj20150706)
关键词 类内测试样本组 稀疏表示 人脸识别 矩阵L1-范数 多样本 intra-class testing-samples sparse representation face recognition matrix L1 - norm multiple samples
  • 相关文献

参考文献2

二级参考文献14

  • 1HU Jie, ZHANG Yujun, LI Peng, WANG Hui, HUANG Lan & HU YuanzhongState Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China,Department of Physics, Tsinghua University, Beijing 100084, China,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.Micro-mechanical analysis of dynamic processes of nanomanipulation[J].Science China(Physics,Mechanics & Astronomy),2004,47(z1):88-92. 被引量:28
  • 2Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 3Huang J Z, Huang X L, Metaxas D. Simultaneous image transformation and sparse representation recovery. In: Proceedings of the 26th IEEE Conference on Computer Vision and Image Recognition. Anchorage, United States: IEEE, 2008. 1-8.
  • 4Wagner A, Wright J, Ganesh A, Zhou Z H, Ma Y. Towards a practical face recognition system: robust registration and illumination by sparse representation. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Image Recognition Workshops. Miami, United States: IEEE, 2009. 597-604.
  • 5Wright J, Ma Y. Dense error correction via l1 minimization. IEEE Transactions on Information Theory, 2010, 56(7): 3540-3560.
  • 6Yang M, Zhang L, Yang J, Zhang D. Robust sparse coding for face recognition. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Image Recognition. Springs, United States: IEEE, 2011. 625-632.
  • 7He R, Hu B G, Zheng W S, Guo Y Q. Two-stage sparse representation for robust recognition on large-scale database. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference. Atlanta, United States: AAAI, 2010. 475-480.
  • 8Huang J B, Yang M H. Fast sparse representation with prototypes. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Image Recognition. San Francisco, United States: IEEE, 2010. 3618-3625.
  • 9Li C G, Guo J, Zhang H G. Local sparse representation based classification. In: Proceedings of the 2010 International Conference on Pattern Recognition. Istanbul, Turkey: ICPR, 2010. 649-652.
  • 10Zhang N, Yang J. K nearest neighbor based local sparse representation classifier. In: Proceedings of the 2010 Chinese Conference on Pattern Recognition. Chongqing, China: CCPR, 2010. 400-404.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部