期刊文献+

基于词包模型和SURF局部特征的人脸识别 被引量:2

Face recognition based on BOW and SURF local features
下载PDF
导出
摘要 针对传统人脸识别方法实时性差的缺点,提出了一种加速鲁棒性特征(SURF,speed up robust features)和词包模型(BOW,bag-of-word)相结合的人脸识别方法.图像经过预处理后,使用SURF算法自动提取图像的关键点和相应的特征描述符,再进一步用BOW方法将其编成视觉单词作为人脸的局部特征.最后,采用K最邻近结点算法进行分类识别.使用了2个数据集验证了提出的方法——标准CMU-PIE(卡内基梅隆大学——姿势、光照、表情人脸数据库)人脸库和采集的数据库,分别达到了97.5%和99.3%的识别率,而且特征提取的时间少于0.108 s,识别的时间少于0.017 s.结果表明,本文提出的算法不仅精确而且快速,具有更好的稳定性和有效性. To overcome the limitations of traditional face recognition methods for real-time, a face rec- ognition method which based on speed up robust features and bag-of-word model was proposed. Image after preprocessing, we used SURF to extract key points of images and corresponding feature descriptors au-tomatically. Further, bag-of word model was used to code the descriptors into visual words as local features of the face. Finally, K-Nearest Neighbor algorithm was adopted to recognize the human faces. The proposed method is validated with both CMU-PIE dataset and dataset collected in the laboratory. It can a- chieve 97.50//00 and 99.3%0 recognition rates on these two datasets, respectively. In average, it took less than 0.108 s for feature extraction and less than 0.017 s for matching. The results indicate that the pro- posed method not only precise moreover fast, and had better stability and effectiveness.
作者 刘翠响 李敏 张凤林 LIU Cuixiang(School of Electronics Information Engineering, LI Min, ZHANG Fenglin Hebei University of Technology ,Tianjin 300401, China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2017年第4期411-418,共8页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(61203245)
关键词 人脸识别 词包模型 SURF 局部特征 K-NN face recognition bag-of-word model SURF local features K-NN
  • 相关文献

参考文献2

二级参考文献38

  • 1Matungka R, Zheng Y F, Ewing R L. Image Registration Using Adaptive Polar Transform[J].IEEE Transactions on Image Processing, 2009,18 (1 O) : 2340-2354.
  • 2Song Z L,Li S,George T F. Remote sensing image regis- tration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories [J]. Optics Express, 2010,18(2) : 513-522.
  • 3Wong A. An adaptive monte carlo approach to phase- based multimodal image registration[J]. IEEE Transac- tions on Information Technology in Biomedicine, 2010, 14 (1) :173-179.
  • 4Xiong Z,Zhang Y. A critical review of image registration methods[J]. International Journal of Image and Data Fu- sion, 2010,1 (2) : 137-158.
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Int. J. Comput. Vis. ,2004,60(2) : 91-110.
  • 6Bay H,Tuvtellars T,Gool L Van. SURF: speeded up ro- bust features[J]. Computer Vision and Image Understand- ng,2008,110(3):346-359.
  • 7Rong W, Chen H, et al. Mosaicing of Microscope Images based on SURF[C]. 24th International Conference Image and Vision Computing New Zealand (IVCNZ 2009) ,2009, 272-275.
  • 8Bouchiha R, Besbes K. Automatic remote-sensing image registration using SURF[C]. 2010 The 3rd International Conference on Machine Vision (ICMV 2010), 2010,406- 410.
  • 9Tola E,Lepetit V. A fast local descriptor for dense matc- hing[C]. IEEE Computer Society Conference on Comput- er Vision and Pattern Recognition. Washington, DO: IEEE Computer Society, 2008,1-8.
  • 10Tola E, Lepetit V. DAISY: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010,32 (5) : 815-830.

共引文献49

同被引文献22

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部