摘要
针对传统人脸识别方法实时性差的缺点,提出了一种加速鲁棒性特征(SURF,speed up robust features)和词包模型(BOW,bag-of-word)相结合的人脸识别方法.图像经过预处理后,使用SURF算法自动提取图像的关键点和相应的特征描述符,再进一步用BOW方法将其编成视觉单词作为人脸的局部特征.最后,采用K最邻近结点算法进行分类识别.使用了2个数据集验证了提出的方法——标准CMU-PIE(卡内基梅隆大学——姿势、光照、表情人脸数据库)人脸库和采集的数据库,分别达到了97.5%和99.3%的识别率,而且特征提取的时间少于0.108 s,识别的时间少于0.017 s.结果表明,本文提出的算法不仅精确而且快速,具有更好的稳定性和有效性.
To overcome the limitations of traditional face recognition methods for real-time, a face rec- ognition method which based on speed up robust features and bag-of-word model was proposed. Image after preprocessing, we used SURF to extract key points of images and corresponding feature descriptors au-tomatically. Further, bag-of word model was used to code the descriptors into visual words as local features of the face. Finally, K-Nearest Neighbor algorithm was adopted to recognize the human faces. The proposed method is validated with both CMU-PIE dataset and dataset collected in the laboratory. It can a- chieve 97.50//00 and 99.3%0 recognition rates on these two datasets, respectively. In average, it took less than 0.108 s for feature extraction and less than 0.017 s for matching. The results indicate that the pro- posed method not only precise moreover fast, and had better stability and effectiveness.
作者
刘翠响
李敏
张凤林
LIU Cuixiang(School of Electronics Information Engineering, LI Min, ZHANG Fenglin Hebei University of Technology ,Tianjin 300401, China)
出处
《河北大学学报(自然科学版)》
CAS
北大核心
2017年第4期411-418,共8页
Journal of Hebei University(Natural Science Edition)
基金
国家自然科学基金资助项目(61203245)