期刊文献+

多测量向量块稀疏信号重构ISAR成像算法 被引量:4

Multiple measurement vectors block sparse signal recovery ISAR imaging algorithm
下载PDF
导出
摘要 为实现有限脉冲快速逆合成孔径雷达(inverse synthetic aperture radar,ISAR)稀疏成像,利用ISAR目标块状结构特征,提出一种基于多量测向量(multiple measurement vectors,MMV)模型的块稀疏信号重构ISAR成像算法。首先,构建MMV稀疏成像模型,将ISAR成像转化为MMV块L0范数的稀疏重构问题。其次,选用负指数函数序列作为平滑函数去近似块L0范数,通过构建一个递减的参数序列,对平滑函数优化求解,采用梯度投影方法将所求解投影到可行解空间。最后,增加修正步骤,确保沿着最速下降方向对块稀疏信号优化求解。仿真结果验证了本文算法在成像时间和成像质量方面具有优势。 In order to obtain fast inverse synthetic aperture radar(ISAR)sparse images with finite pulse,a multiple measurement vectors(MMV)model block sparse signal recovery ISAR imaging algorithm is proposed by utilizing the block structure of targets.Firstly,the MMV sparse imaging model is established,ISAR imaging is converted into the MMV block sparse signal recovery problem.Then,one negative exponential function sequence is used as the smoothed function to approach the block L0 norm,the optimization solution of the smoothed function is obtained by constructing a decreasing sequence,the solution is projected into the feasible set by the gradient projection algorithm.Finally,the revised step is added to ensure the searching direction of the optimization value of the block sparse signal is the steepest descent gradient direction.Simulation results verify the proposed algorithm has advantages in imaging time and imaging quality.
作者 冯俊杰 张弓
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第9期1959-1964,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61071163 61071164 61471191 61501233) 航空基金(20152052026) 中央高校基本科研业务费专项资金(NP2015504) 江苏高校优势学科建设工程资助课题
关键词 逆合成孔径雷达 多量测向量 块稀疏信号 平滑函数 inverse synthetic aperture radar(ISAR) multiple measurement vectors(MMV) block sparse signal smoothed function
  • 相关文献

参考文献6

二级参考文献81

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions onInformation Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J. Compressive sampling[C]. Proceedings of theInternational Congress of Mathematicians, Madrid, 2006:1433-1452.
  • 3Baraniuk R and Steeghs P. Compressive radar iniaging[C].IEEE Radar Conference, Boston, MA, USA, 2007: 128-133.
  • 4Xing S, Dai D, Li Y, et al" Polarimetric 3D reconstruction ofmanmade objects[C]. IEEE International Geoscience andRemote Sensing Symposium, Munich, Germany, 2012:455-458.
  • 5Axelsson S R J. Analysis of random step frequency radar andcomparison with experiments[J]. IEEE Transactions onGeoscience and Remote Sensing, 2007, 45(4): 890-904.
  • 6Xu J, Pi Y, and Cao Z. Bayesian compressive sensing insynthetic aperture radar imaging[J]. IET Radar, Sonar hNavigation, 2012,6(1): 2—8.
  • 7Gurbuz A C, McClellan J H, and Scott W R. A compressivesensing data acquisition and imaging method for steppedfrequency GPRs[J]. IEEE Transactions on Signal Processing,2009,57(3): 2640-2650.
  • 8Chu He, Liu Long-zhu, Xu Lian-yu, et al" Learning basedcompressed sensing for SAR imaging super-resolution [J].IEEE Journal of Selected Topics in Applied EarthObservations and Remote Sensing, 2012, 5(4): 1271-1281.
  • 9Potter L C, Ertin E, Parker J T, et al. Sparsity andcompressed sensing in radar imaging [J]. Proceedings of theIEEE, 2010, 98(6): 1006-1020.
  • 10Haupt J and Nowak R. A generalized restricted isometryproperty[R]. University of Wisconsin Madison TechnicalReport ECE-07-1, 2007.

共引文献24

同被引文献25

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部