期刊文献+

含两个非线性项的Gronwall-Bellman型非连续函数积分不等式的推广 被引量:1

Generalization of a Class of Integral Inequalities with Gronwall-Bellman Type for Discontinuous Functions
下载PDF
导出
摘要 研究了含有未知函数的两个非线性项的非连续函数积分不等式,利用分析技巧给出了未知函数的上界估计,并利用此结果估计了脉冲微分方程的上界. In this paper,we give the upper bound estimation of an unknown function containing three nonlinear terms of integral inequality for discontinuous functions.The result is used to estimate the upper bounds of impulsive differential equations.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第8期89-96,共8页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11561019) 广西自然科学基金项目(2013GXNSFAA019022) 广西教育厅项目(201204LX423 2013LX148 KY2015YB280)
关键词 非连续函数积分不等式 未知函数估计 脉冲微分系统 integral inequality for discontinuous functions estimation of unknown functions impulsive differential system
  • 相关文献

参考文献5

二级参考文献61

  • 1Borysenko S D. Integro-sum inequalities for functions of many independent variables[J]. Differential Equations, 1989,25(9):1638-1641.
  • 2Borysenko S D. Intergro-Sum inequalities and their use in the study of impulse systems in: Proceeding of Ⅵ internat[J]. M Kiravchuk Conf,1997.41-53.
  • 3Borysenko D S. About One Integral Inequality for Piece-wise Continuous Functions[M]. in: Proc X Int Kravchuk Conf Kyiv,2004,323.
  • 4Borysenko S D, Ciarletta M, Iovane G. Integro-sum inequalities and motion stability of systems with impulse perturbations [J]. Nonlinear Anal, 2005,62 : 417-428.
  • 5Borysenko S D, Iovane G. About Estimates of Solutions for Nonlinear Hypertolic Equations with Impulsive Perturbations on Some Hypersurfaces[M]. University of Salerno, March, 2006,7.
  • 6Yuan Gong Sun. On retarded integral inequalities and their applications[J]. J Math Anal Appl, 2005,301 : 265-275.
  • 7Iovane G. Some new integral inequalities of Bellman-Bihari type with delay for discontinous functions [J]. Nonlinear Analysis, 2007,66 : 498-508.
  • 8Gallo A, Piccirillo A M. About new analogies of Gronwall-Bellman-Bihari type inequalities for discontinuous functions and estimated solution for impulsive differential systems[J]. Nonlinear Analysis,2007,67:1550-1559.
  • 9Yu A Mitropolsking, Iovane G, Borysenko S D. About a generalization of Bellman-Bihari type inequalities for discontinuous functions and their applications[J]. Nonlinear Analysis,2007,86:2140-2185.
  • 10严勇.一类非连续函数的Bellman—Bihari型积分不等式的推广及应用[J].四川I大学学报:自然科学版,2012,49(6):1219.

共引文献13

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部