期刊文献+

基于MATLAB的极大似然估计分析木条数据合理性

Based on MATLAB and the Analysis of the Maximum Likelihood Estimation Batten Data Rationality Kan Ruixiang
下载PDF
导出
摘要 现实生活中,数据多而复杂,处理起来有一定难度。针对这种情况,提出基于概率论中的极大似然估计的方法进行处理。算法首先进行相关指标的快速求解,然后基于纹理分析进行模拟的类的划分,判定分类是否合理并统计分类合理的数据的个数,最后上述结果为基础,计算数据分类的合理率。实验结果表明,在本组的数据中,准确率高的达98%,低的也有80%,可信度较高。通过实验笔者得出构建正态分布模型、提供利用极大似然估计的思想对木条相关的属性数据进行计算从而判决其合理与否的方法是可行的、合理的、有效的。 There are too many complicated data in our daily life and processing up has the certain difficulty. For this kind of situation, based on the theory of maximum likelihood estimation method is proposed for processing. Fast solving algorithm firstly on relevant indicators, and then simulated class division based on texture analysis, determine the reasonable classification and the number of statistical classification and data, finally based on the above results, calculate the data classification. The experimental results show that in this group of data, high ac- curacy of 98%, low of 80%, being of higher credibility. Through the experiment the author concluded construction of normal distribution model by using the maximum likelihood estimation, the method of providing the attribute data of wood related calculation and judging whether it is reasonable or not is feasible and reasonable.
作者 阚瑞祥
出处 《江苏理工学院学报》 2017年第2期28-33,共6页 Journal of Jiangsu University of Technology
关键词 计算机 MATLAB 正态分布 机器学习 极大似然估计 computer MATLAB normal distribution machine learning maximum likelihood estimation
  • 相关文献

参考文献4

二级参考文献8

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部