期刊文献+

多镜筒望远镜中间块结构的设计与优化 被引量:1

Design and Optimization of Multi-tube Telescope Center Section
原文传递
导出
摘要 引力波探测望远镜配有5个用于不同频段观测的镜筒。每个镜筒重720 kg,平行安装在中间块上。为了保证每个镜筒的位置精度和长期稳定性,借助ANSYS Workbench,对支承5个镜筒的中间块的结构形式进行了拓扑优化,得到最佳力传递路径。然后根据拓扑优化的结果,设计了三种中间块结构并优化了各自的结构尺寸,得到最佳的设计方案。最佳方案表明:在整体重力作用下,镜筒方向在0°,45°,90°的位置最大倾斜量分别为5.43″,3.84″,0″,结构自振频率为75.68 Hz。计算结果表明所设计的多镜筒中间块满足探测望远镜的指标要求。 The gravitational wave telescope designed in this paper is equipped with five tubes to observe the cosmic mierowave background radiation at difirent wave lengths. These five tubes, each 720 kg in weight, are installed on the center section of the telescope in parallel. To guarantee the position accuracy and long-term stability of each tube, the structure of the center section, under the gravity of five tubes, is optimized by using the topology optimization via the finite element analysis software ANSYS Workbench, from which the optimal path of force transmission is also obtained. According to the results of the topology optimization, three kinds of center section structures ale. designed and optimized on the dimensions. The optimal solution indieates that the max tilt angle of tubes at the position of 0°, 45° and 90° is 5. 055 5″, 3. 574 6″, and 0″, respectively, and the natural fi'equency of the structure is 75.68 Hz. Calculation results show that the designed center section meets the requirement of the telescope.
出处 《机械设计与研究》 CSCD 北大核心 2017年第4期171-174,178,共5页 Machine Design And Research
基金 中国科学院战略性先导科技专项(B类)资助 任务编号:XDB23020400
关键词 引力波探测望远镜 多镜筒 中间块 结构优化设计 gravitational wave telescope center section multi-tube telescope structure optimization design
  • 相关文献

参考文献7

二级参考文献76

  • 1许素强,夏人伟.桁架结构拓扑优化与遗传算法[J].计算结构力学及其应用,1994,11(4):436-446. 被引量:34
  • 2Michell AGM. The limits of economy of material in frame structure[J]. Philosphical Magazine, 1904, 6 (8): 589- 597.
  • 3Kirsh U , Topping B H VlMinimum weight design of structural topologies [J] .J. Struc. Eng. , 1992 , 118 ( 7): 1770 -1785.
  • 4Rozvany GIN, ZhouM. The DCOC algorithm, part II: topological, geometrical and generalized shape optimization [ J ]. ComputerMethods in AppliedMechanics and Engineering, 1991, 89 (1- 3) : 309 - 336.
  • 5BendsoeMP, Ben2TalA, Zowe J. Optimization methods for truss geometry and topology design [ J ]. Structural Optimization, 1994, 7(3): 141 - 159.
  • 6Grierson D E, Pak W HiOptimal sizing, geometrical and topological design using a genetic algorithm [J]. Struc. Opt. ,1993 ,6 (3): 151 - 159.
  • 7孙焕纯,柴山,王跃方,等.离散变量结构优化设计[M].大连:大连理工大学出版社,2002,358—377.
  • 8Michell A G.The limits of economy of materials in frame structures[J].Philosophical Magazine,1904,Series 6,8(47):589-597.
  • 9Dorn W S,Gomory R E,Greenberg H J.Automatic design of optimal structures[J].J de Mechnique,1964,3(1):25-52.
  • 10Cheng Gengdong,Olhoff N.Regularized formulation concerning optimal design of solid elastic plates[J].Int.J Solids Structures,1981,17:305-323.

共引文献70

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部