摘要
为了甄别在弹性裤袜中可能会出现的损坏性破洞,提出了一种基于机器视觉的检测方法。利用工业摄像头获取裤袜图像,选用合适的小波基,对经过预处理的裤袜图像进行二维离散小波变换,从小波分解得到的裤袜经向和纬向子图像中提取特征值,对含有疵点的裤袜图像的高频细节子图进行特征提取和归一化处理。对得到的特征值曲线进行分析,根据曲线的突变位置,判断待检测裤袜中疵点的位置;采用基于最大熵的阈值分割法进行阈值分割,从而获取裤袜疵点位置。
A hole detects detection method for the thin elastic pantyhose based on machine vision was proposed. The pantyhose image was taken by industry camera. Selected a suitable wavelet base and transformed the preprocessed image of pantyhose by the two-dimensional discrete wavelet. Extracted and normalized the characteristics from the high-frequency detail sub-image. The position of defect of the pantyhose was determined by analyzing the characteristic value curve. Furthermore, maximum entropy was applied to threshold segmentation to locate defects.
作者
王玉涵
程凯
孙以泽
WANG Yuhan CHENG Kai SUN Yize(College of Mechanical Engineering,Donghua University, Shanghai 201620, China)
出处
《毛纺科技》
CAS
北大核心
2017年第8期80-84,共5页
Wool Textile Journal
关键词
轻薄弹性裤袜
机器视觉
小波分解
疵点检测
阈值分割
thin elastic pantyhose
machine vision
wavelet analysis
detect detection
threshold segmentation