期刊文献+

基于脑部MR图像GMM特征决策分类的肿瘤诊断 被引量:4

Diagnosis of Tumor in Brain MR Images Based on GMM Features and Decision Tree Classifier
下载PDF
导出
摘要 磁共振(MR)图像提供了大量用于医疗检查的信息。精确鲁棒的脑部MR图像分割、特征提取和分类对于临床诊断肿瘤是非常重要的。提出一种新的基于脑部MR图像的肿瘤诊断方法。首先,通过多阈值分割形态学操作检测图像的畸形区域,然后,提取用于分类的高斯混合模型(GMM)特征,最后,利用决策树分类器对肿瘤图像类型进行分类。整个分类过程分为训练和测试2个阶段,训练阶段提取肿瘤图像和非肿瘤图像不同的特征,在测试阶段基于知识库进行肿瘤和非肿瘤分类。使用准确度、误报率和漏检率3个性能指标对算法进行评估,实验结果表明,分类准确度可达91.18%-94.11%,误报率和漏检率在2.94%-4.41%范围内,可以有助于更好的脑部肿瘤诊断。 Magnetic resonance imaging (MRI) offers a lot of information for medical examination. Accuracy and robustness of MRI segmentation, feature extraction and classification are very important for the diagnosis of tumor from the clinical point of view. A new tumor diagnosis method based on MR image of the brain is proposed. An abnormal area is detected using the multi-threshold segmentation with morphological operations of MRI firstly. Then, Gaussian mixture model (GMM) features are extracted for the purpose of classification. Finally, the decision tree classifier is used to classify the type of tumor image. The whole classification process is divided into stages of training and testing. In the training stage, various features are extracted from the tumor and non-tumor images. In the testing stage, based on the knowledge base, the classifier classifies the image into tumor and non-tumor. Accuracy and the false alarm and missed detection rate are used to evaluate the algorithm, experimental results show that the algorithm has excellent performance which can contribute to a better diagnosis of brain tumor.
出处 《控制工程》 CSCD 北大核心 2017年第8期1718-1722,共5页 Control Engineering of China
基金 内蒙古自治区高等学校科学研究项目(NJZY13252) 包头医学院科学研究基金项目(BYJJ-QM201657)
关键词 脑部肿瘤 磁共振图像 分割 高斯混合模型特征 决策树 Brain tumor MR image segmentation GMM feature decision tree
  • 相关文献

参考文献5

二级参考文献34

  • 1高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 2钱银锋,郑斐群,余永强,张诚.幕上脑内肿瘤磁共振灌注成像的初步研究[J].临床放射学杂志,2005,24(2):108-111. 被引量:5
  • 3张建伟,夏德深.高斯混合模型改进的活动轮廓模型MRI分割[J].计算机辅助设计与图形学学报,2005,17(12):2647-2653. 被引量:12
  • 4李建中,杨昆,高宏,骆吉洲,郭政.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493. 被引量:24
  • 5Koen Van Leemput, Frederik Maes, Dirk Vandermeulen, et al. Automated Model-Based Field Correction of MR Image of the Brain. IEEE Trans, Medical Imaging, 18 (10) :897 - 906.
  • 6Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods [ J]. Journal of Computational Physics, 1999, 148(1) ::2-22.
  • 7Sun T, Neuvo Y. Detail-preserving median based filters in image processing. Pattern Recognit. Lett. , 1994,15:341 - 347.
  • 8Wang Junghua, Lin Lianda. Improved median filter using minmax algorithm for image processing. Electronics Letters, 31stJuly, 1997, 33 (16).
  • 9Kennedy J, Eberhart R C. Particle Swarm Optimization[ C]. Proceedings of IEEE International Conference on Neutral Networks, Pwrth, Australia, 1995 : 1942 - 1948.
  • 10Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science, 1999,286: 531-537.

共引文献8

同被引文献23

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部