期刊文献+

基于P-ReliefF特征选择方法的带钢表面缺陷识别 被引量:5

Steel strip surface defect recognition based on P-ReliefF feature selection method
下载PDF
导出
摘要 带钢表面缺陷纹理的复杂性和多样性、背景纹理中存在的伪缺陷等给现有的带钢表面缺陷特征提取和识别带来了极大的困难。为此,提出了一种新的带钢表面缺陷选择与识别方法。首先,通过各向异性扩散算法对带钢表面的伪缺陷干扰进行抑制;其次,利用提出的P-Relief F方法对表面缺陷特征进行选择,相比传统的Relief F方法,该方法考虑了不同维度特征之间的关联性;最后,利用筛选的特征集和支持向量机(SVM)核分类器对带钢表面缺陷进行分类与识别。实验结果表明,提出的方法能够提取出具有高区分性和鲁棒性的带钢表面缺陷特征,并且对于划痕、褶皱、凸起和污渍等不同类型的带钢表面缺陷,本方法相比传统的方法可以获得更高的识别率。 The complexity and diversity of the texture of the surface defects on the surface of strip steel, as well as the false defects in the background texture, have brought great difficulties to the feature extraction and recognition of the strip steel surface defects.Therefore, this paper presents a new method for the selection and identification of steel strip surface defects.First of all, through the inhibition of anisotropic diffusion algorithm for suppression of false defect on strip surface;secondly, selection of surface defect features using P-Relief method in this paper, compared with the traditional Relief method, this method considers the different dimensions of feature correlation.Finally, using the feature set and SVM kernel classifier to classify and recognize the surface defects of steel strip.The experimental results show that the proposed method can extract the features of strip surface defect pairwise independence and robustness, and for scratches, bumps and folds, stains and other different types of defects, this method compared with the traditional method can get higher recognition rate.
出处 《电子测量与仪器学报》 CSCD 北大核心 2017年第7期1053-1060,共8页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61403119) 河北省自然科学基金(F2014202166) 天津市特派员科技计划(15JCTPJC55500)资助项目
关键词 特征选择 带钢表面缺陷 RELIEFF 相关性 缺陷识别 ReliefF feature selection strip surface defect ReliefF correlation defect identification
  • 相关文献

参考文献6

二级参考文献47

  • 1张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 2宋宇,李满天,孙立宁.基于相似度函数的图像椒盐噪声自适应滤除算法[J].自动化学报,2007,33(5):474-479. 被引量:42
  • 3陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 4Yu L,Liu H.Efficient Feature Selection via Analysis of Relevance and Redundancy[J].Journal of Machine Learning Research,2004(5):1205-1224.
  • 5Montemanni R,Smith DH,Gambardella LM.Ant colony systems for large sequential ordering problems[C]//Proceedings of the 2007 IEEE Swarm Intelligence Symposium,2007:478-482.
  • 6Denning D.E.An Intrusion Detection Model[J].IEEE Transaction on Software Engineering,2010,13(2):222-232.
  • 7Helmi Md Rais,Zulaiha Ali Othman,Abdul Razak Hamdan.Improved dynamic ant colony system on symmetric traveling salesman problem[C]//International Conference on Intelligent and Advanced Systems,2011:43-48.
  • 8Cheng-Lung Huang,Chieh-Jen Wang.A GA-based feature selection and parameters optimization for support vector machines[J].Expert Systems with Applications,2009,31(2):231-240.
  • 9Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks,USA:IEEE Press,2005:1942-1948.
  • 10Durga Prasad Muni,Nikhil R Pal,Jyotirmoy Das.Genetic programming for simultaneous feature selection and classifier design[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B,2009,36(1):106-117.

共引文献64

同被引文献39

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部