期刊文献+

CuI空穴传输层提高聚合物太阳能电池J_(sc),V_(oc)及FF的研究(英文)

Simultaneous improvement of J_(sc),V_(oc) and FF of polymer solar cells with CuI as hole transport layer
下载PDF
导出
摘要 针对碘化铜在器件中既是空穴传输层,又是电子阻挡层的特点,提出在PCDTBT、PC70BM聚合物太阳能电池中引入了碘化铜(CuI)传输层。将碘化铜淀积到顶电极银和聚合物材料之间,有效地提高了器件的空穴传输能力。实验优化了碘化铜传输层的厚度,研究了不同顶电极对聚合物太阳能电池的影响,证明了碘化铜能够同时提高电池的短路电流密度、开路电压和填充因子,因此得到了效率显著提高的太阳能电池。对于使用金电极的电池,碘化铜厚度为3nm时,电池效率从0.67%提高到5.47%,当进一步提高碘化铜厚度时,对于金、银两种电极,电池效率均由于阻挡效应而下降。实验结果表明,碘化铜是PCDTBT、PC70BM聚合物太阳能电池的一种有效的传输层材料。 A novel buffer layer copper iodide(CuI)was introduced into PCDTBT,PC70BM polymer solar cells(PSCs),where the CuI acts simultaneously as of hole transport layer(HTL)and electron block layer(EBL).Through depositing the CuI between the polymer and Ag and Au anodes,the hole collection ability has been increased.By optimizing the thickness of CuI and top anode,simultaneous enhancement of short-circuit current density(J_(sc)),open-circuit voltage(V_(oc)),and fill factor(FF)has been achieved,leading to a dramatic increase of device efficiency,from 0.67%to 5.47%with 3nm CuI and Au anode in comparison with the device without CuI.With thicker CuI,the efficiency decreases noticeably both for Au and Ag anodes due to the block effect.The result indicates that the CuI is an effective buffer layer for PCDTBT,PC70BM PSCs.
作者 苏和堂 赵玉霞 丁健 董可秀 于文娟 何烨 SU Hetang ZHAO Yuxia DING Jian DONG Kexiu YU Wenjuan HE Ye(Department of Mechanical and Electrical Engineering, Chuzhou Vocational and Technical College, Chuzhou 239000, China School of Mechanical and Electronic Engineering, Chuzhou University, Chuzhou 239000, China School of Foreign Languages, Chuzhou University, Chuzhou 239000, China.)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第7期621-626,共6页 JUSTC
基金 Supported by the University Natural Science Research Project of Anhui Province(KJ2017A417,KJ2015A153) Scientific Research Starting Fund of Chuzhou University(2016qd05)
关键词 聚合物太阳能电池 空穴传输层 碘化铜 polymer solar cells hole transport layer copper iodide
  • 相关文献

参考文献2

二级参考文献34

  • 1Yu G,Gao J,Hummelen J C,et al. Polymerphotovoltaic cells: Enhanced efficiencies via a networkof internal donor-acceptor heterojunctions [ J ].Science, 1995,270: 1 789-1 791.
  • 2Thompson B C, Frechet J M J. Organic photovoltaicpolymer-fullerene composite solar cells [J].AngewChem Int Ed, 2008,47: 58-77.
  • 3Dennler G,Brabec C J. Polymer-fullerene bulk-heterojunction solar cells [J].Adv Mater, 2009,21:1 323-1 338.
  • 4Krebs F C,Fyenbo J,Jorgensen M. Productintegration of compact roll-to-roll processed polymersolar cell modules : Methods and manufacture usingflexographic printing, slot-die coating and rotaryscreen printing [J].Mater Chem, 2010,20: 8 994-9 001.
  • 5Deibel C, Dyakonov V. Polymer-fullerene bulkheterojunction solar cells [J].Rep Prog Phys,2010,73:096401-1-096401-39.
  • 6Cai W Z, Gong X, Cao Y. Polymer solar cells: Recentdevelopment and possible routes for improvement in theperformance [J].Solar Energy Mater Solar Cells,2010,94: 114-127.
  • 7He Y J,Li Y F. Fullerene derivative acceptors for highperformance polymer solar cells [J].Phys Chem ChemPhys, 2011,13: 1 970-1 983.
  • 8Dang M T, Hirsch L,Wantz G. P3HT: PCBM, bestseller in polymer photovoltaic research [ J ].AdvMater, 2011,23: 3 597-3 602,.
  • 9Nardes A M,Kemerink M,Janssen RAJ, et al.Microscopic understanding of the anisotropicconductivity of PEDOT: PSS thin films [J].AdvancedMaterials, 2007,19: 1 196-1 200.
  • 10Krebs F C. Fabrication and processing of polymer solarcells: A review of printing and coating techniques [J].Solar Energy Materials Solar Cells, 2009,3:394-412.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部