期刊文献+

改进的GA-BP神经网络模型在财产犯罪预测中的应用 被引量:22

Property Crime Forecast Based on Improved GA-BP Neural Network Model
原文传递
导出
摘要 发现犯罪时空分布规律并预测犯罪发生,是提高警务策略有效预防、控制犯罪的重要方法。在分析财产犯罪时空规律的基础上,利用BP神经网络模型自动学习训练各因子与财产犯罪的非线性关系,建立了财产犯罪预测模型。针对BP神经网络模型易陷入局部最优和模型不稳定的缺陷,提出了利用遗传算法(GA)选择各因子最优的初始化权重和参数,并以此作为BP神经网络模型的初始化权重矩阵,通过对历史数据的学习及训练建立了改进后的GA-BP神经网络模型。利用某市2007~2012年财产犯罪、人口、GDP、土地利用等35个综合影响因子数据,对改进前后的模型进行了预测对比试验。结果表明,改进后的GA-BP神经网络模型成功克服了BP模型的缺陷,收敛迭代最小次数从117次改进到8次;10次计算收敛迭代次数最大误差从370次提高到5次;模型预测精度(RMES)从0.043 0提高到0.019 95。 To discover the spatial-temporal distribution and estimate the occurrence of crimes is an important method of improving policing strategies and preventing and controlling crimes effectively.In this paper,aprediction model for property crimes is first established based on the analysis of the spatial-temporal distribution of property crimes by using the BP(back propagation)neural network to train and learn the non-linear relationship between factors and crimes automatically.Aiming at the defects of BP neural network model of easily trapping in local optimum and instability,an improved GABP neural network model is then put forward,which uses the genetic algorithm(GA)to select the optimal initial weights and parameters for BP neural network model so as to learn and train the historical data.Finally,in order to evaluate whether our improved GA-BP neural network model is better than the BP neural network model in forecasting property crimes,a comparative experiment between those two predictive models is carried out with the data of 35 comprehensive impact factors from 2007to2012,such as property crimes,population,GDP,land utilization and so on.According to the study results,the improved GA-BP neural network model overcomes the defects of BP model successfully and shows a better performance in predicting property crimes.On the one hand,the minimum number of convergent iteration is reduced from 117 to 8.On the other hand,the maximum error of the ten times of calculation of the iterations is reduced from 370 to 5.Additionally,the prediction precision RMES is improved from 0.043 0to 0.019 95.
作者 李卫红 闻磊 陈业滨 LI Weihong WEN Lei CHEN Yebin(School of Geography,South China Normal University,Guangzhou 510631, China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2017年第8期1110-1116,1171,共8页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41171141)~~
关键词 时空分析 BP神经网络模型 GA-BP模型 财产犯罪时空规律 财产犯罪预测 预测模型对比分析 spatial-temporal analysis BP neural network GA-BP neural network spatial-temporal distribution of property crime property crime forecasting comparative analysis of forecast models
  • 相关文献

参考文献3

二级参考文献34

  • 1朱春江,唐德善,马文斌.基于灰色理论和BP神经网络预测观光农业旅游人数的研究[J].安徽农业科学,2006,34(4):612-614. 被引量:5
  • 2王发曾.城市建筑空间设计的犯罪防控效应[J].地理研究,2006,25(4):681-691. 被引量:25
  • 3Tony H. Grubesic,Elizabeth A. Mack.Spatio-Temporal Interaction of Urban Crime[J]. Journal of Quantitative Criminology . 2008 (3)
  • 4Ratcliffe, Jerry H,Rengert, George F.Near-Repeat Patterns in Philadelphia Shootings[J]. Security Journal . 2008 (1-2)
  • 5Shane D. Johnson,Wim Bernasco,Kate J. Bowers,Henk Elffers,Jerry Ratcliffe,George Rengert,Michael Townsley.Space–Time Patterns of Risk: A Cross National Assessment of Residential Burglary Victimization[J]. Journal of Quantitative Criminology . 2007 (3)
  • 6Shane D. Johnson,Kate J. Bowers.The Burglary as Clue to the Future: The Beginnings of Prospective Hot-Spotting. European Journal of Criminology . 2004
  • 7LW Sherman,PR Gartin,ME Buerger.Hot spots of predatory crime: Routine activities and the criminology of place. Criminology . 1989
  • 8Wim Bernasco.Them Again?: Same-Offender Involvement in Repeat and Near Repeat Burglaries. European Journal of Criminology . 2008
  • 9William Wells,Ling Wu.Proactive Policing Effects on Repeat and Near-Repeat Shootings in Houston. Police Quarterly . 2011
  • 10William Wells,Ling Wu,Xinyue Ye.Patterns of Near-Repeat Gun Assaults in Houston. Journal of Research in Crime and Delinquency . 2011

共引文献96

同被引文献197

引证文献22

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部