期刊文献+

采用交替K-奇异值分解字典训练的图像超分辨率算法 被引量:2

Image Super-resolution Based on Alternate K-Singular Value Decomposition
原文传递
导出
摘要 采用稀疏表示的图像超分辨率算法中,双字典训练算法与字典的细节恢复能力相关,针对已有双字典训练算法使字典缺乏高频细节信息的特点,提出了一种交替K-奇异值分解字典训练算法。该算法分为训练和测试部分。在训练部分每次字典更新都采用奇异值分解所得到的向量对低高频样本块进行最佳低秩逼近,使得低高频样本块随着迭代次数的增加逐渐取得相同或者相似的稀疏表示系数。在测试过程中,测试低频样本块可以利用低频字典取得的稀疏表示系数与高频字典相乘得到高频细节信息。实验表明,与目前已有算法相比,该算法能够得到高频细节较丰富的图像,平均峰值信噪提高0.3dB以上,结构相似度提高0.01左右。 The coupled dictionary training algorithm in super-resolution based on sparse representation are directly related to the detail recovery capability of the algorithm,but the existing algorithm makes the dictionaries lack texture structure information.This paper proposes an alternate K-singular value decomposition dictionary training algorithm.This algorithm is composed of a training stage and a testing stage.In the training stage,the best low rank approximations of low and high frequency patches are used for the updating of the dictionaries.This method makes the sparse representations of low and high frequency patches becomes more and more similar with the increasing of the iteration number.In the testing stages,the high frequency details can be estimated by multiplying the sparse representations generated with low frequency patches with the high frequency dictionary.The experimental results demonstrate that the proposed algorithm can provide clearer resultant images.Compared with many existing methods,the average peak signal to noise ratio exceeds about 0.3dB and structure similarity exceeds about 0.1.
作者 徐健 常志国 张小丹 XU Jian CHANG Zhiguo ZHANG Xiaodan(School of Telecommunication and Information Engineering, Xi~an University of Posts and Telecommunications, Xi'an 710121, China School of Information Engineering, Chang'an University, Xi'an 710064, China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2017年第8期1137-1143,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(61601362 61571361 61671377 41504115) 陕西省国际合作与交流计划(2015KW-005)~~
关键词 图像超分辨率 稀疏表示 字典训练 奇异值分解 super-resolution sparse representation dictionary training singular value decomposition
  • 相关文献

参考文献2

二级参考文献23

  • 1刘经南,魏二虎,黄劲松,张小红.月球测绘在月球探测中的应用[J].武汉大学学报(信息科学版),2005,30(2):95-100. 被引量:19
  • 2沈焕锋,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报(信息科学版),2006,31(11):949-952. 被引量:21
  • 3Thevenaz P, Blu T Unser M. Interpolation Revisi-ted[J]. IEEE Trans Medieal Imaging, 2000,19(7) : 739-758.
  • 4Elad M, Aharon M. Image Denoising via Sparse and Redundant Tepresentations over Learned Dic- tionaries[J]. IEEE Trans on Image Processing, 2006, 15(12): 3 736-3 745.
  • 5Bruckstein A M, Donoho D L, Elad M. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images[J]. SIAM Review, 2009, 51(1): 34-81.
  • 6Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Proeessing[M]. Heidelberg: Springer, 2010.
  • 7! Schultz R R, Stevenson R L. A Bayesian Approach E1 / to Image Expansion for Improved Definition [J].IEEE Transactions on Image Processing, 1994, 3(3) : 233-242.
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: An Algorithm for Designing of over Complete Dic- tionaries for Sparse Representation[J]. IEEE Trans on Signal Processing, 2006, 54(11):4 311-4 322.
  • 9Yang J, Wright J, Huang T, et al. Image Super- resolution Via Sparse Representation [J]. IEEE Trans on Image Processing, 2010, 19 (11) : 2 861- 2 873.
  • 10Huang X, Zhang L. An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Fea- tures for the Classification of High-Resolution Re- motely Sensed Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 257- 272.

共引文献11

同被引文献18

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部