期刊文献+

锂电负极用SiO_2@碳-石墨烯杂化材料的制备(英文) 被引量:1

Synthesis of SiO_2 @carbon-graphene hybrids as anode materials of lithium-ion batteries
下载PDF
导出
摘要 采用超声辅助的水热法及后续热处理法,将硅溶胶、蔗糖、氧化石墨烯自组装制备出具有优异电化学性能的SiO_2@碳-石墨烯(SiO_2@C-G)杂化物。结果表明:SiO_2与蔗糖的质量比是影响SiO_2@C-G杂化物电化学性能的重要因素。15-SiO_2@C-G杂化物(SiO_2与蔗糖的质量比为0.15),表现出较好的可逆储锂性能。电流密度为100 m A·g^(-1) ,首次放电比容量为906 m Ah·g^(-1) ,循环216次后,该电极材料的放电比容量可保持在542 m Ah·g^(-1) 。优异的循环稳定性及可逆容量归因于杂化物良好的导电性,SiO_2颗粒较小的尺寸及均匀分布三者之间的协同效应。该文提出的方法有望为导电性差的金属氧化物基电极材料提供一种简单环保的制备策略。 SiO2@ carbon-graphene (SiO2@ C-G) hybrids with excellent electrochemical performance were prepared by the self-assembly of colloidal silica, sucrose and graphene oxide followed by ultrasonic-assisted hydrothermal and heat treatments. The mass ratio of silica to sucrose is crucial to the electrochemical performance of the resulting hybrids. A hybrid with a mass ratio of silica to sucrose of 0.15 shows the best reversible lithium storage performance, delivering an initial discharge capacity of 906 mAh*g-1 and a capacity of 542 mAh*g-1 at the 216th cycle at a current density of 100 mA*g-1. The excellent cycling ability and high reversible ca-pacity are attributed to a synergetic effect of the good conductivity of the SiO2 @ C-G hybrids, the small SiO2 particle size and the good dispersion of SiO2 nanoparticles in the hybrids. This methodology may provide a simple, scalable and eco-friendly strategy to prepare superior electrode materials from cheap and low electrical conductivity metal oxides.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2017年第4期311-318,共8页 New Carbon Materials
基金 National Natural Science Foundation of China(U1662113,51572296,51372277) Fundamental Research Fund for the Central Universities(15CX08005A)~~
关键词 硅溶胶 蔗糖 石墨烯 负极 锂离子电池 Colloidal silica Sucrose Graphene Anode Li-ion batteries
  • 相关文献

参考文献1

二级参考文献45

  • 1Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451,652-657.
  • 2Scrosati, B. Challenge of portable power. Nature 1995, 373, 557-558.
  • 3Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. a-Fe203 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792-2799.
  • 4Jia, X.; Chen, Z.; Cui, X.; Peng, Y.; Wang, X.; Wang, G.; Wei, F.; Lu, Y. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodesfor lithium-ion batteries. ACSNano 2012, 6, 9911-9919.
  • 5Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.
  • 6Peng, C.; Chen, B.; Qin, Y.; Yang, S.; Li, C.; Zuo, Y.; Liu, S.; Yang, J. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074-1081.
  • 7Yu, A.; Park, H. W.; Davies, A.; Higgins, D. C.; Chen, Z.; Xiao, X. Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 1855-1860.
  • 8Needham, S. A.; Wang, G. X.; Liu, H. K. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 2006, 159, 254 -257.
  • 9Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe203 composite as a high-pertbrmance anode material for lithium ion batteries. ACSNano 2011, 5, 3333-3338.
  • 10Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe203 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988-4991.

共引文献9

同被引文献8

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部