摘要
提出一种基于规范变量分析的滚动轴承性能退化评估方法,用于解决轴承的健康监测与故障预防问题.首先,从健康状态的轴承振动数据中提取有效特征指标,建立参考模型,确定安全阈值;其次,对未知变量的特征指标进行规范变量分析,得到状态空间和残差空间;然后,采用T2和Q统计来分别度量两种空间中信息的变化量,用于反映滚动轴承的退化特性;最后,通过轴承加速寿命测试试验验证了该方法的有效性.与现有方法相比,该方法对滚动轴承的退化趋势更加敏感.
To resolve the health monitoring and fault prevention problems, the performance degradation assessment is proposed based on canonical variate analysis (CVA) method for rolling bearings. Firstly, by extracting the useful feature indices from healthy vibration data, the reference model and safety threshold are respectively obtained. Then, the CVA is applied for feature indices of unknown variables to produce the state and residual spaces. Next, T2 and Q metrics are employed to measure changes of information in the bespoke spaces to reflect degradation characteristics of rolling bearings. Finally, the effectiveness of the proposed method is demonstrated by accelerated bearing life testing. Therein, this approach is more sensitive to degradation trends of rolling bearings than existing works.
作者
王宝祥
潘宏侠
杨卫
WANG Baoxiang PAN Hongxia YANG Wei(School of Mechanical and Power Engineering, North University of China, Taiyuan 030051, Shanxi, China School of Instrument and Electronics, North University of China, Taiyuan 030051, Shanxi, China)
出处
《中国工程机械学报》
北大核心
2017年第1期72-76,共5页
Chinese Journal of Construction Machinery
基金
国家自然科学基金资助项目(51175480)
关键词
规范变量分析
退化评估
状态监测
状态空间
残差空间
特征提取
canonical variate analysis
degradation assessment
condition monitoring
state space
residual space
feature extraction