期刊文献+

滚动轴承的状态监测与性能退化评估 被引量:4

Condition monitoring and performance degradation assessment on rolling bearings
下载PDF
导出
摘要 提出一种基于规范变量分析的滚动轴承性能退化评估方法,用于解决轴承的健康监测与故障预防问题.首先,从健康状态的轴承振动数据中提取有效特征指标,建立参考模型,确定安全阈值;其次,对未知变量的特征指标进行规范变量分析,得到状态空间和残差空间;然后,采用T2和Q统计来分别度量两种空间中信息的变化量,用于反映滚动轴承的退化特性;最后,通过轴承加速寿命测试试验验证了该方法的有效性.与现有方法相比,该方法对滚动轴承的退化趋势更加敏感. To resolve the health monitoring and fault prevention problems, the performance degradation assessment is proposed based on canonical variate analysis (CVA) method for rolling bearings. Firstly, by extracting the useful feature indices from healthy vibration data, the reference model and safety threshold are respectively obtained. Then, the CVA is applied for feature indices of unknown variables to produce the state and residual spaces. Next, T2 and Q metrics are employed to measure changes of information in the bespoke spaces to reflect degradation characteristics of rolling bearings. Finally, the effectiveness of the proposed method is demonstrated by accelerated bearing life testing. Therein, this approach is more sensitive to degradation trends of rolling bearings than existing works.
作者 王宝祥 潘宏侠 杨卫 WANG Baoxiang PAN Hongxia YANG Wei(School of Mechanical and Power Engineering, North University of China, Taiyuan 030051, Shanxi, China School of Instrument and Electronics, North University of China, Taiyuan 030051, Shanxi, China)
出处 《中国工程机械学报》 北大核心 2017年第1期72-76,共5页 Chinese Journal of Construction Machinery
基金 国家自然科学基金资助项目(51175480)
关键词 规范变量分析 退化评估 状态监测 状态空间 残差空间 特征提取 canonical variate analysis degradation assessment condition monitoring state space residual space feature extraction
  • 相关文献

参考文献5

二级参考文献54

  • 1高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:95
  • 2李凌均,韩捷,郝伟,董辛,何正嘉.支持向量数据描述用于机械设备状态评估研究[J].机械科学与技术,2005,24(12):1426-1429. 被引量:22
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4Jay Lee. Measurement of machine performance degradation using a neural network model [ J ]. Computers in Industry, 1996,30 : 193 - 209.
  • 5Huang Runqing, Xi Lifeng, Li Xinglin, et al. Residual llfe predictions for ball bearings based on self - organizing map and back propagation neural network methods [ J ]. Mechanical Systems and Signal Processing, 2007,21:193 -207.
  • 6Yan J H, Lee J. Degradation assessment and fault modes classification using logistic regression [ J ]. Journal of Manufacturing Science and Engineering - Transactions of the Asme, 2005,127:912 - 914.
  • 7Hasan Ocak, Kenneth A L, Fred M. Discenzo. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling A method for bearing prognostics [ J ]. Journal of Sound and Vibration,2007,302 : 951 - 961.
  • 8David M J T, Robert P W. Duin. Support vector domain description [ J ]. Pattern Recognition Letters, 1999, 20:1191 - 1199.
  • 9http ://www - ict. ewi. tudelft. nl/- davidt/dd_tools. htmlt.
  • 10Sunnersjo C S. Rolling Bearing Vibrations-the Effects of Geometrical Imperfections and Wears [ J ]. Journal of Sound and Vibration, 1985,98 (4) ,455 - 474.

共引文献112

同被引文献21

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部