摘要
特征提取和选择是网络入侵检测的一个关键步骤,针对当前特征提取算法存在的缺陷,以提高入侵检测正确率为目标,提出了一种基于生物地理优化算法的网络入侵检测模型。对当前网络入侵检测研究现状进行分析,找到当前模型检测正确率低的原因,建立网络入侵检测特征提取和选择的数学模型,采用生物地理优化算法对该数学模型进行求解,并根据求解结果建立最优的入侵检测模型,在Matlab 2014平台上进行了仿真测试。结果表明,该模型可以找到最优的特征,提高了入侵检测的正确率,具有较高的实际应用价值。
Feature extraction and selection are key steps of network intrusion detection. In view of the current defects of feature extraction algorithm, in order to improve the intrusion detection accuracy, this paper put forward a kind of network intrusion detection model based on the biological geographical optimization algorithm. First the current status of network intrusion detec- tion research was analyzed, the cause of the low accuracy of the current model was found, and then a mathematical model of network intrusion detection feature extraction and selection was established, and then the biogeography optimization algorithm was used to solve the mathematical model. According to the result, an optimal model of intrusion detection was given, and fi- nally in the Matlab simulation test is carried out. Results show that the model can find the optimal characteristics, improve the accuracy of intrusion detection, and has higher application value.
出处
《微型电脑应用》
2017年第8期15-17,共3页
Microcomputer Applications
基金
河南省科技计划项目(142102210557)
南阳市科技攻关项目(KJGG 51
KJGG 38)
关键词
互联网
入侵行为
特征提取
检测模型
生物地理优化算法
the Internet
invasion behavior
feature extraction
detection model
biogeography optimization algorithm