期刊文献+

一种水声通信信号调制模式识别方法 被引量:4

One Method of Standard Recognition of Underwater Acoustic Signal
下载PDF
导出
摘要 研究了制式识别的特征参数提取方法,以小波变换为主,结合瞬时频率统计算法、高阶谱等多种识别算法,对现有水下通信信号调制方式进行类间、类内识别,包括多载波(OFDM)和单载波(MFSK、MPSK和QAM)。仿真结果表明,文章所采用的方法在低信噪比下的识别概率均能保持在82%以上,具有较好的识别性能。 This article did a research on themethod of characteristic parameter obtainment. Based on Wavelet Transform, instantaneous parameter extraction and higher-order cumulants are used to recognize the Underwater Sound Signal, including Single carrier(MFSK,MPSK, QAM) and multicarrier(OFDM). Simulation results show that the rate of modulation identification is able to keep 82% above in the situation of low SNR, meaning that the proposed method has a good ability of identification.
出处 《通信对抗》 2017年第2期12-17,共6页 Communication Countermeasures
基金 国家自然科学基金(61471309 61671394) 中央高校基本科研业务费专项资金(20720170044)
关键词 水声信号 小波变换 支持向量分类器 制式识别 underwater acoustic signal wavelet transform SVM modulation recognition
  • 相关文献

参考文献1

二级参考文献15

  • 1童峰,陆佶人,方世良.水声目标识别中一种轴频提取方法[J].声学学报,2004,29(5):398-402. 被引量:16
  • 2田杰,张春华,刘维,黄海宁,薛山花.基于倒谱分析的被动水声目标分类[J].系统工程与电子技术,2005,27(10):1708-1710. 被引量:9
  • 3吴丹,顾学迈.一种新的基于支持向量机的自动调制识别方案[J].南京理工大学学报,2006,30(5):569-572. 被引量:9
  • 4Nandi A K,Azzouz E E.Automatic analogue modulation recognition[J].Signal,Processing,1995,46(2):211-222.
  • 5Nandi A K,Azzouz E E.Algorithms for automatic modulation recognition of communication signals[J].IEEE Trans Commun,1998,46(4):431-436.
  • 6Swami A,Sadler B M.Hierarchical digital modulation classification using cumulates[J].IEEE Trans Commun,2000,48(3):416-429.
  • 7Gardner W A,Spooner C M.Cyclic-spectral analysis for signal detection and modulation recognition[C]∥Military Comunications Conference.San Diego,CA,USA:IEEE,1988:419-424.
  • 8Wu Z,Yang T C,Liu Z,et al.Modulation detection of underwater acoustic communication signals through cyclostationary analysis[C]∥Military Communications Conference.Orlando:IEEE,2012:1-6.
  • 9Vapnik V N.Statistical learning theory[M].New York:John Wiley and Sons,1998:81-85.
  • 10Cortes C,Vapnik V N.Support vector networks[J].Machine Learning,1995,20:144-152.

共引文献15

同被引文献25

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部