期刊文献+

基于MEMS加速度传感器的步态识别 被引量:9

Gait recognition based on MEMS acceleration sensor
下载PDF
导出
摘要 针对最小采集约束条件和经历长时间跨度下识别率低的问题,提出一种基于MEMS加速度传感器的步态识别算法。该算法以右髋部位置采集加速度信号构造多个高斯差分尺度空间,利用局部关键点生成稀疏表示的步态特征位置模板,并采用模板融合来有效转换稀疏性步态周期特征,最后利用最近邻算法和投票机制对步态特征进行识别。在公开的含175名测试者的步态加速度数据集上进行测试,实验结果显示识别率为98.67%和认证率为99.89%,并进一步研究了测试集和训练集样本数目对识别效果的影响,验证了特征提取的有效性和稳定性。 The conventional gait recognition algorithm basing on acceleration signal to extract gait features has low recognition rate when with minimal constraint conditions or relatively long time span. To solve this problem, a novel gait recognition algorithm based on MEMS acceleration sensor is proposed, in which the acceleration signals are collected at right-side half-pelvis to construct various Do G(difference of Gaussian) scale-spaces. The location information template of the gait features by sparse representation is built, and the gait cycle features based on sparse representation is effectively converted according to the fusion of gait templates. The gait features are recognized by the nearest neighbor approach and the voting scheme. Experimental results demonstrate that the proposed algorithm significantly outperforms other methods. Based on open access datasets of 175 volunteers, the recognition rate of 98.67% and the verification of 99.89% are obtained. Furthermore, the influence on the recognition effect by different composition of training samples and testing samples is further studied, which indicates the stability and effectiveness of the feature extraction by the proposed method.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2017年第3期304-308,359,共6页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(61372019) 中央高校基础科研基金(N150308001)资助项目
关键词 MEMS加速度传感器 关键点 稀疏表示 模板融合 MEMS acceleration sensor signature points sparse representation template fusion
  • 相关文献

参考文献3

二级参考文献19

  • 1钱伟行,曾庆化,万骏炜,熊智.基于人体下肢运动学机理的行人导航方法[J].中国惯性技术学报,2015,23(1):24-28. 被引量:9
  • 2李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:37
  • 3Mallat S and Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 4Bergeau F and Mallat S. Matching pursuit of images. In: Proceedings of IEEE-SP, USA, 1994: 330-333.
  • 5Wright J and Yang A Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 6Mairal J and Bach F. Non-local sparse models for image restoration. IEEE International Conference of Computer Vision. Kyoto, Japan, 2009: 2272-2279.
  • 7Coifman R and Wickerhauser M. Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 1992, 38(2): 1713-1716.
  • 8Chen S and Donoho D L. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1999, 20(1): 33-61.
  • 9Daubechies I. Time-frequency localization operators: a geometric phase space approach. IEEE Transactions on Information Theory, 1988, 34(4): 605-612.
  • 10Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

共引文献45

同被引文献67

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部