期刊文献+

基于车牌识别流数据的伴随车辆发现算法 被引量:3

Accompanying Vehicle Discovery Algorithm Based on License Plate Recognition Stream Data
下载PDF
导出
摘要 针对伴随车辆发现及其实时性问题,基于随时间变化的车牌识别流数据,提出一种采用并行频繁项集发现(PFID)技术的伴随车辆组实时发现算法。该算法根据频繁项挖掘Eclat算法的思想,并利用分布式流数据处理框架Spark Streaming生成最大伴随车辆组。实验结果表明,与排列组合算法及FP-Growth算法相比,PFID算法消耗内存更少,响应时间更短,在秒级响应时间内能找到伴随车辆组,达到及时预警目的。 Aiming at the problem of accompanying vehicle discovery and its real-time performance, this paper proposes a real-time accompanying vehicle group discovery algorithm using Parallel Frequent Itemsets Discovery (PFID) technology based on license plate recognition data stream with time variation. The algorithm adopts the idea of Eclat algorithm for frequent items mining, and implements the generation of maximum accompanying vehicle groups by the distributed data stream processing framework named Spark Streaming. Experimental results show that compared with the Permutation and Combination(PM) algorithm and FP-Growth algorithm,the PFID algorithm consumes less memory and has faster response. The accompanying vehicle group is found within seconds of the response time, which achieves warning objective timely.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第8期193-199,共7页 Computer Engineering
基金 北京市自然科学基金重点项目(4131001) 北京市教育委员会科技计划重点项目(KZ201310009009)
关键词 智能交通系统 车牌自动识别流数据 伴随车辆组 SPARK Streaming并行框架 DStream模型 Eclat算法 intelligent transportation system Automatic Number Plate Recognition (ANPR) stream data accompanyingvehicle group Spark Streaming parallel framework DStream model Eclat algorithm
  • 相关文献

参考文献2

二级参考文献21

  • 1张静,阮永华,张磊,等.嫌疑车辆关联查找方法:中国,CNl01593418[P].2009-12-02.
  • 2丁锐,孟小峰,杨楠.一种高效的移动对象相似轨迹查询方法[J].计算机科学,2003,30(10):386-403.
  • 3Jeung H, Yiu Man-lung, Zhou Xiao-fang. Discovery of convoys in trajectory databases [C]//VLDB'08, 2008: 1068-1080.
  • 4Yun Xiong, et al. Mining Peculiarity Groups in Day-by- Day Behavioral Dataset[C]//Proceeding on International Corderence of Data Mining(ICDM09 ), 2009 : 578-587.
  • 5Agrawal R, Imielinski T, Swami A. Database min- ing:a performance perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1993,5 (6) : 914- 925.
  • 6NOREIKIS M, BUTKUS P, NURMINEN J K. In-vehicle application for multimodal route planning and analysis[C]// Proceedings of the 2014 IEEE 3rd International Conference on Cloud Networking. Piscataway: IEEE, 2014:350-355.
  • 7TANG L A, ZHENG Y, YUAN J, et al.On discovery of traveling companions from streaming trajectories[C]// Proceedings of the 2012 IEEE 28th International Conference on Data Engineering. Piscataway: IEEE, 2012: 186-197.
  • 8ZAHARIA M. An architecture for fast and general data processing on large clusters, UCB/EECS-2014-12 [R/OL].[2015-01-22]. http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-12.html.
  • 9AGRAWAL R, IMIELINSKI T, SWAMI A. Database mining: a performance perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1993,5(6):914-925.
  • 10AGRAWAL R, IMIELINSKI T, SWAMI A. Mining assocaition rules between sets of items in large databases[C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1993:207-216.

共引文献12

同被引文献46

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部