期刊文献+

基于用户项目体验度的协同过滤推荐算法 被引量:4

Collaborative Filtering Recommendation Algorithm Based on User Project Experience Degree
下载PDF
导出
摘要 在用户相似度计算基础上,根据用户偏好以及项目特征对用户评分产生的影响,提出一种针对用户项目体验度的推荐算法。阐述项目体验度对用户产生的潜在影响,选择皮尔森相似性计算公式做进一步计算。通过用户对项目的好评数以及给项目的评分分别占该项目的总评数和总体项目评分中的比例,获得用户对项目的体验度权重。采用长尾理论平衡用户相似性和用户对流行项目的关注度,计算得出用户相似度并产生预测和推荐。实验结果表明,与传统协同过滤算法相比,该算法提高了相似度计算准确度,并能改善数据稀疏情况下的推荐效果。 On the basis of the general user' s similarity calculation, a recommendation algorithm based on user project experience degree is proposed according to the impact of user preferences and project characteristics on user ratings. This paper describes the potential impact of the project experience degree on the user, and selects Pearson similarity formula for further calculation. Through the number of users praise for the projects accounting for the total number of project reviews and the proportion of the user' s rating to the overall project score,the user experience weight for the project is gained. The long tail theory is used to balance the user' s similarity and the user' s attention to the popular items. The user' s similarity is calculated, and the prediction and recommendation are generated. Experimental results show that, compared with the traditional collaborative filtering algorithm, the proposed algorithm improves the accuracy of similarity computation and the recommendation effect under sparse data.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第8期215-218,224,共5页 Computer Engineering
基金 国家自然科学基金"实例结构限制下信息传播算法的收敛性研究"(61462001) 宁夏高校科研项目(NGY2015151)
关键词 推荐系统 协同过滤 用户项目偏好 用户体验度 长尾理论 recommendation system collaborative filtering user project preference user experience degree longtail theory
  • 相关文献

参考文献7

二级参考文献64

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 2ADOMAVICIUS G, TUZHILIN A. Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[ J]. IEEE Transactions of Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 3BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[ C]// UAI 98: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan-Kaufmann, 1998:43-52.
  • 4SU XIAOYUAN, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques [ J/OL]. Advances in Artificial Intelligence, 2009, 2009:421425 [ 2010 - 02 - 02]. http://www, hindawi, corn/ journals/aai/2009/421425, html.
  • 5AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[ J]. Information Sciences: an International Journal, 2008, 178(1): 37-51.
  • 6SHEN LEI, ZHOU Y1MING. A new user similarity measure for collaborative filtering algorithm[ C]// 2010 Second International Con- ference on Computer Modeling and Simulation. Washington, DC: IEEE Computer Society, 2010, 2:375-379.
  • 7CANDILLIER L, MEYER F, FESSANT F. Designing specific weighted similarity measures to improve collaborative filtering systems [ C]// Proceedings of the 8th Industrial Conference on Advances in Data Mining: Medical Applications, E-Commerce, Marketing, and Theoretical Aspects, LNCS 5077. Berlin: Springer-Verlag, 2008: 242 - 255.
  • 8MovieLens data sets [ EB/OL]. (2006 - 10 - 05) [ 2010 -01 - 20]. http://www, grouplens, org/node/73.
  • 9HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems [ J]. ACM Transactions on Information Systems, 2004, 22( 1 ) : 5 - 53.
  • 10GREINER R, SU Xiao-yuan, SHEN Bin, et al. Structural extension to logistic regression: discriminative parameter learning of belief net classifiers [ J ]. Machine Learning,2005,59 ( 3 ) : 297- 322.

共引文献99

同被引文献23

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部