期刊文献+

远程培训中个性化学习资源推荐算法 被引量:2

Recommendation Algorithm of Personalized Learning Resources in Remote Training
下载PDF
导出
摘要 本文提出一种基于标签的多因素推荐算法.用户可以根据自己的需求,进行因素自定义和优先级排序,算法先根据用户初始化信息选取资源,随后分析用户行为数据更新用户所属的群及用户的喜好,再通过用户与项目相似度计算、项目关联度计算为用户推荐所需资源.算法模型采用分类组合得出结果,降低了相似度计算的复杂度.将算法应用于企业远程培训平台的个性化学习模式中,结果表明,该算法较好地改善了用户个性化学习资源的推荐效果. This paper puts forward a recommendation algorithm of various factors based on the labels. Users can define the factors and sort them with priority according to their own requirements., This algorithm will select the resources according to the initial information of users, then update users' groups and users' preferences, then recommend the useful resources for users based on the similarity calculation between users and project and the correlation calculation of the project. The algorithm model adopts classification of combination to get the results, and reduces the complexity of similarity calculation. The algorithm was applied to the personalized learning platform of remote training platform in enterprise. The results show that this algorithm has much improved the recommendation effects of user's personalized learning resources.
出处 《计算机系统应用》 2017年第8期212-216,共5页 Computer Systems & Applications
基金 黑龙江省教育科学规划课题(十二五)(GBC1213052) A7中国石油天然气集团公司工程技术生产运行管理系统 省教育厅教学改革项目(JG2014010640) 云计算理念打造大庆教育云的研究(DSGB2016053)
关键词 推荐算法 多因素 教育模式 标签 远程教育 recommendation algorithm various factors education mode label distance learning
  • 相关文献

参考文献4

二级参考文献59

  • 1谢圣献,谢光.语义检索在电子商务中的应用研究[J].微计算机信息,2008,24(12):135-136. 被引量:4
  • 2张丙奇.基于领域知识的个性化推荐算法研究[J].计算机工程,2005,31(21):7-9. 被引量:34
  • 3Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 4Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 5Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 6Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 7Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 8Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 9Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.
  • 10Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52.

共引文献506

同被引文献12

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部