摘要
考虑了一阶泛函差分方程△x(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-r(n))),n∈Z正周期解的存在性.其中f,g∈C([0,∞),[0,∞)),λ为参数数运用不动点指数理论获得了上述问题正周期的存在性结果,所得结果推广了Raffoul的相关结果.
We are concerned with the existence of positive periodic solutions for the first-order delayed difference equations
Δ x(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))),n∈Z
where f,g∈C([0,∞),[0,∞)), λ is a parameter. By using the fixed-point index theory, we establish the existence results of positive periodic solutions for the above problem. Our results generalize some results by Raffoul.
出处
《应用泛函分析学报》
2017年第2期183-188,共6页
Acta Analysis Functionalis Applicata
基金
青海大学2015年度中青年基金(2015-QGY-12)
关键词
差分方程
正周期解
存在性
difference equation
positive periodic solutions
existence