摘要
根据Salehi等人在Discrete Mathematics上提出的图的IC-指数及极大IC-着色的相关概念,研究了直径为4的树T=T(m_1,m_2,…,m_s)的IC=着色问题·得到了当2≤<_1,m_2,…,m_s-1≤m_s,s≥2时,树T的IC-指数为Π_j=1~s(2~mj+1)+(2m,+1),其极大IC-着色有|π|种,其中|π|为m_1,同_2,…m_…s-1的全排列数.这为确定图的IC-指数提供了一般方法.
With the concepts of IC-index and maximum IC-colorings of graphs put forward by Salehi etc. in Discrete Mathematics, the IC-index of the tree T = T (m1,m2,…… , ms) of diameter four is studied. When 2 K ml,m2,... ,ms-1 ≤ ms,s 7〉 2, it is proven that the IC-index of the tree T is (2^ms + 1) + πj^s=l (2^mj + 1) and there are 17rl kinds of maximum IC- coloring of the tree T, where br] represents the number of all permutations of positive integers ml, m2,……, ms-1. It also provide a method to find IC-indices of graphs.
出处
《数学的实践与认识》
北大核心
2017年第15期307-312,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11171273)
国家大学生创新创业训练计划项目(201310699069)