期刊文献+

大数据技术在主动配电网中的应用研究 被引量:4

Research on the application of big data technology in active distribution network
原文传递
导出
摘要 配网状态数据的两大基本特征就是自主管理和自主运行,在主动配电网的协作下都能实现。大数据时代的节奏快、数据流通量大,已经达到了PB级。相比传统的电网模式,现今的电网在用电采集、在线监视控制方面都是智能化的。当今能源消纳是分布式的,就需要结合大数据的高效性和覆盖性来与用户协作完成,这是当今工作的重点。本文采取递进的方式分别从主动配电网的优点、达成的应用和面对的挑战、主动配电网的优化和未来的展望这几个方面来论述。其中关于电网技术的配置、电网状态评估,保护、需求侧管理等方面的细节等方面也做了详细的论述。 The two basic characteristics of distribution network state data are independent management and independent operation. Big data era fast-paced,large data flow, has reached the level of PB. Compared with the traditional power grid model, the current power grid in the power collection, online monitoring and control are intelligent. In today's energy is distributed, requires a combination of big data and high coverage and user collaboration, which is the focus of today's work. This paper discusses the advantages of the active distribution network, the application and the challenge, the optimization of the active power distribution network and the prospect of the future. In this paper, the configuration of power grid technology, the evaluation of power network status, the protection and the demand side management are also discussed in detail.
作者 刘光辉
机构地区 新疆工程学院
出处 《自动化与仪器仪表》 2017年第8期197-198,共2页 Automation & Instrumentation
关键词 大数据时代 智能电网建设 big data era smart grid construction
  • 相关文献

参考文献12

二级参考文献240

  • 1李庚银,罗艳,周明,王宇宾.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机工程学报,2006,26(3):25-30. 被引量:89
  • 2吴猛.基于Web的数据可视化技术初探[J].福建电脑,2007,23(12):58-59. 被引量:6
  • 3Michael Schroeck, Rebecca Shockley, Peter Tufano, et al. Analytics: the real-world use of big data[EB/OL]. [2014-08]. http://public. dhe.ibm.com/common/ssi/ecm/en/gbe0352 lusen/GBE03521USEN. PDF.
  • 4Nimmagadda S L, Dreher H V. Big-data integration methodologies for effective management and data mining of petroleum digital ecosystems[C]// 2013 7th IEEE International Conference on Digital Ecosystems and Technologies(DEST). Menlo Park, CA: IEEE, 2013:148-153.
  • 5Greene C S, Tan J, UngM, et al. Big data bioinformatics[J]. Journal of Cellular Physiology, 2014, 229(12): 1896-1900.
  • 6Kezunovic Mladen, Xie Le, Grijalva Santiago. The role of big data in improving power system operation and protection[C]//Bulk Power System Dynamics and Control-IX Optimization, Security and Control of the Emerging Power Grid(IREP), 2013 IREP Symposium. Rethymno: IEEE, 2013: 1-9.
  • 7Ilic D, Karnouskos S, Wilhelm M. A comparative analysis of smart metering data aggregation performance[C]// 2013 llth IEEE International Conference on Industrial Informatics (IND/N). Bochum: IEEE, 2013: 434-439.
  • 8Corporation IBM. Managing big data for smart grids and smart meters[EB/OL]. [2014-08]. http://www.smartgridnews.eom/artman/ uploads/1/IBM_anaytics~aaper.pdf.
  • 9Wong P K C, Kalam A, Barr R. A "big data" challenge : turning smart meter voltage quality data into actionable information[C]//22nd International Conference and Exhibition on Electricity Distribution(CIRED2013). Stockholm: IET, 2013: 1-4.
  • 10The first highly interactive map of electricity use in Los Angeles[EB/OL] . [2014-08] . http:// environment.ucla.edu/map/. ties.

共引文献1753

同被引文献44

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部