期刊文献+

改进的BP神经网络在传动轴结构设计中的应用 被引量:2

Application of improved BP neural network in structural design of drive shaft
下载PDF
导出
摘要 Shaffer函数定义域在[-10,10]区间内,BP神经网络拟合该函数训练时间长,且无法达到期望精度,说明BP神经网络拟合复杂非线性函数能力需改善。文章提出了一种改进的BP神经网络,先对网络的输入进行K-Means聚类,BP神经网络训练采用大规模节点,聚类输入分别激活部分节点进行训练,每组聚类使用不同的节点,通过子网络训练聚类样本,减少了网络拟合难度。经测试改进的BP神经网络达到了精度。最后,用改进的BP神经网络进行了轴径的最优计算。 The Shaffer function defines the domain in the range of [-10,10], BP neural network fitting function costs long training time, and can not achieve the desired accuracy, it showed that the ability of BP neural network to fit the complicated nonlinear functions needs to be improved. This paper presents an improved BP neural network, first, we should carry out K-Means clustering for the input of network, BP neural network is trained by large scale nodes, partial nodes are activated by clustering input to train, each cluster uses different nodes, by sub network to train clustering samples, it reduces network fitting difficulty. The test results show that improved BP neural network meets the precision. Finally, the axle diameter is calculated optimally by the improved BP neural network.
作者 王胜 杨宏才
出处 《无线互联科技》 2017年第16期146-148,共3页 Wireless Internet Technology
基金 西京学院2016年院科研基金 项目名称:粒子群算法在机器人循迹控制中的应用 项目编号:XJ160232 项目名称:西京学院2017年创新创业训练计划项目 项目编号:127152017036
关键词 BP神经网络 Shaffer函数 K-MEANS聚类 结构优化 BP neural network Shaffer function K-Means clustering structure optimization
  • 相关文献

参考文献5

二级参考文献28

  • 1丁进良,岳恒,齐玉涛,柴天佑,郑秀萍.基于遗传算法的磨矿粒度神经网络软测量[J].仪器仪表学报,2006,27(9):981-984. 被引量:16
  • 2李松,贺国光,张杰.车头间距与高速公路交通流混沌[J].西南交通大学学报,2007,42(3):305-309. 被引量:5
  • 3张风山,静永臣.工程机械液压、液力系统故障诊断与维修[M].北京:化学工业出版社,2009:287-300.
  • 4Li Y W, Wei G Z, Ying L. Rolling bearing fault di- agnosis based on wavelet packet-neural network char- acteristic entropy [J]. Advanced Materials Research, 2010, 108-111(1): 1075-1079.
  • 5Wang D, Li M, Wang L, et al. Fault diagnosis of ABS of vehicles based on BP neural net [C]// Pro- eeedings of the 29th Chinese Control Conference. Bei- jing, China: IEEE, 2010: 4041-4045.
  • 6Huang L, Nan J G, Sui Y H. Fault diagnosis method for HUD based on fuzzy BP neural network [C]// Proceedings - 2010 International Conference on Artifi- cial Intelligence and Education. Hangzhou, China: IEEE, 2010: 550-553.
  • 7Jiang H, Jia S, Lai G. Fault diagnosis of marine main engine based on BP neural network [C]// Pro- ceedings of 2009 8th International Conference on Reliability, Maintainability and Safety. Chengdu, China: IEEE, 2009: 822-825.
  • 8Wei J, Yu H, Li J. Transformer fault diagnosis based on improved quantum genetic algorithm and BP network [J]. Applied Mechanics and Materials, 2010, 29-32: 1543-1549.
  • 9Wu X, Hu C, Wang Y. Model checking algorithm based on ant colony swarm intelligence [J]. Communication in Computer and Information Science, 2009, 51 :281-285.
  • 10Mo Q Y, Cao J, Gao F. Diagnosis technique based on BP and D-S theory [J]. Advanced Materials Re- search, 2011, 179-180:544-548.

共引文献205

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部