期刊文献+

SIFT特征匹配算法优化 被引量:4

Optimization of SIFT Feature Matching Algorithm
下载PDF
导出
摘要 基于SIFT特征的图像目标匹配与检测应用中,特征点的误匹配将直接影响系统对目标检测的灵敏度。提出了一种将二分查找法与仿射变换结合,用于目标快速检测的方法。先用算法复杂度较低的最近邻-次近邻法对SIFT特征点进行粗匹配,并用匹配对中两特征点与主方向角度差进行筛选。随机选取若干组特征点,计算其仿射变换参数,依据其参数的统计分布特点,用二分查找法得到最优解,实现对目标的检测。结果显示,算法有较高的检测效率和稳定性。 Based on SIFt feature matching and image target detection applications, mis- matching feature points on the target system will directly affect detection sensitivity. A bina- ry search and affine transformation combined method is presented for rapidly detection of the target. Firstly, rough match is performed with a lower computational complexity nearest neighbor - next nearest neighbor method of SIFT feature points. Then, screening has been done with two matching feature points in main direction of the angular difference. Based on the statistical distribution of its parameters, some set of feature points are selected randomly to calculate the affine transformation parameters within the binary search method, by which the optimal solution is obtained and target detection is realized. The results show that the al- gorithm has higher detection efficiency and stability.
作者 董慧颖 徐友聚 DONG Huiying XU Youju(Shenyang Ligong University, Shenyang 110159, China)
出处 《沈阳理工大学学报》 CAS 2017年第3期54-57,76,共5页 Journal of Shenyang Ligong University
关键词 SIFT 二分查找法 仿射变换 统计分布 匹配 检测 SIFT binary search affine transform probability distribution matching detec- tion
  • 相关文献

参考文献2

二级参考文献22

  • 1贾涛,陈涛,杨润奎.基于仿射不变量的长基线立体匹配[J].仪器仪表学报,2005,26(z1):623-624. 被引量:2
  • 2罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 3丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 4常发亮,马志强,张赞.机械手多线段目标实时视觉检测与定位[J].电子测量与仪器学报,2007,21(6):99-103. 被引量:6
  • 5He X C, Yung N H C. Curvature scale space corner detector with adaptive threshold and dynamic region of support[C]// Proceedings of the 17th International Conference on Pattern Recognition (ICPR), 2004: 1051-4651.
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Liu Jin, Zhang Tianxu. Recognition of the blurred image by complex moment Invariants [J]. Pattern Recognition Letters, 2005, 24: 1128-1138.
  • 8Kaka M, Ghosh D. Image compression using wavelet based compressed sensing and vector quantization [C]//IEEE Proceedings of the International Conference on Signal Processing(ICSP2012), 2012: 1: 640-645.
  • 9Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 10Sun Nan, Pan Xiaowei, Ma Chun, et al. A survey on compressed sensing based banknote classification [C]// ICSPS2011, 2011, 7. 509-516.

共引文献133

同被引文献21

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部