期刊文献+

多壁碳纳米管/聚偏氟乙烯共混中空纤维膜的制备及表征 被引量:3

Preparation and Properties of MWCNTs/PVDF Blend Hollow Fiber Membrane
下载PDF
导出
摘要 采用非溶剂致相分离(NIPS)法,添加羧基化多壁碳纳米管(MWCNTs-COOH)制备聚偏氟乙烯(PVDF)中空纤维超滤膜,研究了MWCNTs-COOH的添加量、管径对超滤膜性能的影响。通过扫描电镜、傅里叶红外光谱仪、X射线衍射仪分别研究了膜的形态、结构、晶型变化。结果表明,在MWCNTs-COOH质量分数为0.03%,管径为20~30nm时,中空纤维膜纯水通量、对牛血清蛋白(BSA)截留率、亲水性、抗污染性能达到最大。膜的拉伸强度、断裂伸长率相比纯PVDF膜显著提高,随MWCNTs-COOH添加量增加,先增大后减小且在0.03%达到最大;但随管径增大而减小。结果显示,质量分数0.03%,管径为20~30nm的MWCNTs-COOH制备出的中空纤维膜性能最优。 A serious of polyvinylidene fluoride (PVDF) nanocomposite hollow fiber membranes with different contents of multi walled carbon nanotube (MWCNTs-COOH) were prepared via non solvent induced phase separation (NIPS) method. Experiment results show that in addition to MWCNTs-COOH 0.03%, diameter 20--30 nm, hollow fiber membrane flux, bovine serum albumin (BSA) retention rate, hydrophilicity and anti fouling properties reach the maximum. The tensile strength and elongation at break are significantly increased compared with those of pure PVDF film, which increase first and then decrease with the increasing of MWCNTs-COOH concentration, and reach the maximum at the MWCNTs-COOH mass fraction of 0.03 % ; but decrease with the increase of diameter. The results show that the performance of the hollow fiber membrane prepared at adding 0.03 % MWCNTs-COOH and the diameter of 20--30 nm MWCNTs- is optimal.
作者 王薇 董林
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2017年第8期163-170,177,共9页 Polymer Materials Science & Engineering
基金 国家重点研发计划重点专项(2016YFC0400503 2016YFC0400509) 天津市科技计划项目(课题)(15PTSYJC00250) 长江学者和创新团队发展计划(IRT13084)
关键词 多壁碳纳米管 聚偏氟乙烯 制备 管径 亲水性 multi walled carbon nanotube polyvinylidene fluoride preparation diameter hydrophilicity
  • 相关文献

参考文献1

二级参考文献21

  • 1陈晔,杨德才,宋丹丹.聚偏氟乙烯β相结晶研究[J].高等学校化学学报,1993,14(9):1326-1329. 被引量:8
  • 2Liu F,Awanis Hashim N,Liu Y T,Moghareh Abed M R,Li K.J Membr Sci,2011,375(1):1-27.
  • 3Bottino A,Caparmelli G,Comite A.Desalination,2002,146(1-3):35-40.
  • 4Thostenson E T,Ren Z,Chou T W.Compos Sci Technol,2001,61(13):1899-1912.
  • 5Dresselhaus M S,Dresselhaus G,Saito R.Carbon,1995,33(7):883-891.
  • 6Niu C,Sichel E K,Hoch R,Moy D,Tennent H.Appl Phys Lett,1997,70(11):1480-482.
  • 7Skoulidas A I,Ackerman D M,Johnson J K,Sholl D S.Phys Rev Lett,2002,89(18):203-209.
  • 8Skoulidas A I,Sholl D S,Johnson J K.J Chem Phys,2006,124(5):2080-2080.
  • 9Sokhan V P,Nicholson D,Quirke N.J Chem Phys,2002,117(18):8531-8539.
  • 10Yu S,Zheng W,Yu W,Zhang Y,Jiang Q,Zhao Z.Macromolecules,2009,42(22):8870-8874.

共引文献4

同被引文献12

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部