期刊文献+

基于多传感器信息融合的机器人障碍物检测 被引量:18

Obstacle detection of robot based on multi-sensor information fusion
下载PDF
导出
摘要 针对单一传感器在机器人避障过程中不能全面且准确定位障碍物的缺点,提出基于多传感器信息融合的障碍物检测方法。第一阶段使用视觉传感器检测未知环境中的障碍物,通过Zernike矩边缘检测方法提取障碍物图像边缘,然后采用Hough变换原理提取障碍物的直线特征,获得障碍物大概位置;第二阶段使用超声波传感器和红外传感器对障碍物进行检测,获得障碍物准确位置;最后使用联合卡尔曼滤波对3种传感器获得的信息进行融合,得出融合后的障碍物位置信息。实验结果表明:该方法克服视觉传感器、超声波传感器和红外传感器的局限性,可以精确感知机器人周围的未知环境信息,并能够检测和定位机器人路径上的障碍物,定位误差<6 cm,满足机器人避障的实时性和可靠性需求。 Aiming at the shortcoming that the single sensor could not locate the obstacle completely and accurately in the process of obstacle avoidance of the robot, an obstacle detection method based on multi-sensor information fusion was proposed. Firstly, vision sensor was used to detect the obstacle in unknown environment. The edge of the obstacle image was extracted by the Zernike moment edge detection method, then the Hough transform principle was used to extract the straight line feature of the obstacle, so as to obtain the approximate position of the obstacle. Secondly, ultrasonic sensor and infrared sensor were used to detect the obstacle to obtain the exact position of obstacles. Finally, the federated Kalman filter was used to fuse the information obtained by the three sensors to gain information of the obstacle position after fusion. The test result shows that this method can overcome the limitations of vision sensors, ultrasonic sensors and infrared sensors, and can accurately detect the unknown environmental information around the robot and detect and locate the obstacles on the path of robot with positioning error less than 6 cm, meeting the real-time and reliability of robot obstacle avoidance.
作者 王中立 牛颖
出处 《中国测试》 北大核心 2017年第8期80-85,共6页 China Measurement & Test
关键词 障碍物检测 信息融合 联合卡尔曼滤波 视觉传感器 ZERNIKE矩 HOUGH变换 obstacle detection information fusion federated Kalman filter vision sensor Zernikemoment Hough transform
  • 相关文献

参考文献9

二级参考文献50

  • 1张崇猛,陈超英,庄良杰,刘飞.信息融合理论及其在INS/GPS/Doppler组合导航系统中的应用[J].中国惯性技术学报,1999,7(3):2-9. 被引量:18
  • 2吴建平,殷战国,曹思榕,李坤垣.红外反射式传感器在自主式寻迹小车导航中的应用[J].中国测试技术,2004,30(6):21-23. 被引量:78
  • 3贾修一,于绍越,商琳,陈世福.基于Rough集和蚁群算法的属性约简方法[J].广西师范大学学报(自然科学版),2006,24(4):83-86. 被引量:9
  • 4万德均,房建成,王庆.GPS动态滤波的理论、方法及其应用[M].南京:江苏科学技术出版社,2000.
  • 5HAYTHAM Q, LEONHARD R. Unscented and extended Kalman estimators for non-linear indoor tracking using distance measurements [J]. Positioning Navigation and Communication, 2007 ( 3 ) : 177-181.
  • 6WAN E A, VAN DER MERWE R. The unscented Kalman filter for nonlinear estimation [ J ]. Adaptive Systems for Signal Processing, Communications and Control Symposium, 2000 : 153-158.
  • 7VAN DER MERWE R, WAN E A. The square-root unscented kalman filter for state and parameter estimation [J ]. Acoustics, Speech and Signal Processing Proceedings, 2001,6:3461-3464.
  • 8GORDON N, SALMOND D J, SMITH A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimarion [ J ]. IEEE Proceedings- F, 1993, 140 (2) : 107-113.
  • 9LIU SH L. Single observer passive location using phase rate of change with the modified UKF [ J ]. Communications, Circuits and Systems Proceedings, 2006, 1: 311-314.
  • 10SIMANDL M, DUNIIK J, KRAL L. Derivative-free estimation methods: new results and performance analysis [R]. PlzeN: 2007:35-39.

共引文献118

同被引文献176

引证文献18

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部