摘要
文章利用混合Gibbs算法分别在分组数据和定数截尾场合给出了指数-威布尔分布参数的贝叶斯估计,并进行了Monte-Carlo模拟。结果表明:在两种不完全数据场合,用混合Gibbs算法求指数-威布尔分布参数的贝叶斯估计,结果令人满意,该算法可行、稳定且精度高。
The paper uses mixed Gibbs algorithm to respectively give Bayesian estimation of exponentiated Weibull distribution parameters in the grouped data and fixed censored samples occasions, and also makes a Monte-Carlo simulation. The result shows that in both the case of incomplete data, Bayesian estimation using mixed Gibbs algorithm to solve exponentiated Weibult distribution parameters are quite satisfactory, and thus the proposed algorithm is feasible, stable with high precision.
出处
《统计与决策》
CSSCI
北大核心
2017年第16期70-73,共4页
Statistics & Decision
基金
国家自然科学基金资助项目(11665019)
天水师范学院中青年教师科研资助项目(TSA1506)