期刊文献+

基于互信息的湖泊日水位预测——以西洞庭湖为例 被引量:4

Lake daily level forecast by using mutual information: case of west Dongting Lake
下载PDF
导出
摘要 鉴于传统的湖泊水位预测在输入因子选择时具有一定的盲目性,以西洞庭湖为例,利用基于互信息的输入因子选择法建立了日水位预测模型。按河流生态功能将水文年划分为枯水期、汛前涨水期、汛期、汛后退水期4个时期,然后分期计算影响湖泊日水位的自变量与日水位的互信息,并引入广义相关系数将互信息归一化,选出各时期互信息最大的自变量因子作为模型的输入变量。经过模型计算与数据分析可得:F检验结果显著,回归值与实测值的相关度高,剩余标准差小。由此证明用互信息筛选出的因子作为模型的输入变量能取得较好的精度并在实际中易于操作。 For some blindness in selection of input factors for lake daily water level forecasting by traditional methods, we established a lake daily level forecast model for west Dongting Lake by using predictor identification approach based on the mutual information. Firstly , hydrological year is divided into low water period , pre - flood period , flood period , after - flood period by the ecological functions of the Yangtze River. Then the mutual information between the independent variables affecting the lake lvel and the water level is calculated by stages and the gneralized correlation coefficient is introinformation. The independent variables that have the max mutual information in each period are selected as the input variables ofthe model. The analysis results indicate that the results of Ftest are significant, ad the correlation the measured values is high, and the residual standard deviation is small, which demonstrates that the variables selected by mutual information can be used as input variables of the model. The proposed method can be applied sults perform a better precision.
出处 《人民长江》 北大核心 2017年第16期38-42,共5页 Yangtze River
基金 国家自然科学基金项目(51179130) 国家重点研发计划课题(2016YFC0401306)
关键词 互信息 湖泊水位预测 日水位预测模型 湖泊生态安全 西洞庭湖 mutual information lake water level forecast daily water level forecast lake ecological safety west Dongting Lake
  • 相关文献

参考文献10

二级参考文献194

共引文献263

同被引文献58

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部