期刊文献+

基于逻辑回归算法的微博水军识别 被引量:6

The recognition of public opinion viruses of micro-blog based on logistic regression
下载PDF
导出
摘要 受潜在的商业利益的驱动,微博水军横行于话题与评论之间,对人们了解真实的结果产生不良影响,成为正常用户了解事实真相的障碍。分析了正常用户和水军的关系图,以此为切入点,分析了水军的特点,从用户属性中抽取了8个特征数据(粉丝数、关注数、好友粉丝比、注册时间、活跃度、关注速率、双向关注比和互粉数)基于学习数据集R训练逻辑回归分类模型,得到可靠的回归系数后,使用识别样本集R进行识别,水军识别率高达98.770%。为验证抽取的8个特征是否能有效识别水军,使用Scikit-Learn机器学习库中4种分类方法对同一识别样本集进行水军识别,水军识别准确率均在98.688%以上。研究结果表明,选取的8个特征能有效地进行水军判别,逻辑回归分类模型在进行水军识别研究中具有高准确性和可靠性。 Drived by the potential commercial benefits, mic ro -b lo g ’s p u b l ic o p in io n viruse s ram p a n t between to p ic s andnot only have a bad influence on understanding the real result for people,but also have become an obstacle to normal users to explore the truth. This paper analyzed the normal users and public opinion viruses diagram,as the starting point forthe study,after analysing the characteristics of the public opinion ,8 characters ( number of fans,number of friends,the number of mutual concern, re g is te r t im e, a c t iv i t y,a t te n t io n rateand the rate of fans and friends) were extracted. After obtaining reliable regression coefficients by classification trainingel based on a learning data set,the public opinion viruses recognition rate was as high as 98. 770% to verify that the 8 features could identify the public opinion viruses effectively,4 kinds of classification methods in Scikit-Learn machine repos-itory were used to recognize public opinion viruses in the same sample setl and the recognition show that the logistic regression model has high accuracy and reliability in the recognition ofability in the recognition
出处 《微型机与应用》 2017年第16期67-69,72,共4页 Microcomputer & Its Applications
基金 南京农业大学中央高校基本科研业务费人文社会科学研究基金项目(SK2015023) 国家社会科学基金项目(13CTQ031)
关键词 微博 水军 逻辑回归 micro-blog public opinion viruses logistic regression
  • 相关文献

参考文献12

二级参考文献127

  • 1郑智斌,邓兰花.网络个人信源及其可信度分析[J].情报理论与实践,2008,31(6):857-859. 被引量:8
  • 2韩忠明,许峰敏,段大高.面向微博的概率图水军识别模型[J].计算机研究与发展,2013,50(S2):180-186. 被引量:10
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 5CIVANLAR M R, LUTHRA A, WENGER S. Introduction to the special issue on streaming video. IEEE Trans[J]. IEEE Transaction on Circuits and System,2001,11(3):265- 268.
  • 6Joint Video Team of ITU-T VCEG and ISO/IEC MPEG. Scalable Video Coding-Working Draft 1.Joint Video Team, Document JVT-N020[S]. 2005.
  • 7Text of ISO/IEC 14496-10:2005/FDAM 3 Scalable Video Coding. Joint Video Team (JVT) of ISO-IEC MPEG & 1TU-T VCEG[S], Lausanne. 2007.
  • 8ISO/IEC ITU-T Rec. H.264: Advanced Video Coding for Generic Audio visual Service. Joint Video Team (JVT) of ISO-IEC MPEG & ITU-T VCEG[S]. 2003.
  • 9Text of ISO/IEC 14496-4:2001/PDAM 19 Reference Software for SVC. Joint Video Team (JVT) of ISO-IEC MPEG & ITU-T VCEG[S]. 2007.
  • 10SCHWARZ H, MARPE D, WIEGAND T. Overview of the scalable video coding extension of the H.264/AVC stan- dard [J]. IEEE Transaction Circuits and System, 2007,17 (9): 1103-1120.

共引文献119

同被引文献30

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部