摘要
为了解决FTM(Front Tracking Method)算法在计算机中计算耗时长的问题,利用CUDA(Compute Unified Device Architecture)来实现FTM算法在GPU中的并行计算。结合GPU并行计算架构的特性以及FTM算法的特点,本文通过共享内存的引入、线程块划分和线程块共享内存边界元素的纳入、迭代方法的改进和迭代过程中存储结构的变换等方法,提出了将FTM算法中的网格计算以及界面标记点处理方法在GPU中的实现方式。最后,通过模拟单气泡在静止液体中的自由上升运动,验证了FTM在GPU中计算的可行性与计算效率的提升。
In order to solve the problem of low computational effective of the FTM algorithm,this paper used CUDA to realize the parallel implementation of the FTM algorithm in GPU.Combining with the GPU parallel computing architecture and the characteristics of the FTM algorithm,and through introducing shared memory and bringing thread partition and thread block shared memory boundary elements into use,we proposed a method to implement the grid implementation of the FTM algorithm and a way of processing interface marked point in the GPU.At last,the feasibility and efficiency of FTM in GPU were verified by simulating the free ascending motion of single bubbles in a stationary liquid.
出处
《计算力学学报》
CSCD
北大核心
2017年第4期511-516,共6页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金(11562011)
江西省自然科学基金(20151BAB202002)资助项目