期刊文献+

膨胀碳微球/氧化锡复合材料的制备及其电化学性能

Preparation and electrochemical properties of expanded mesocarbon microbeads/SnO_2 composite
下载PDF
导出
摘要 为了提高锂离子电池的能量密度,利用低温氧化-水热法成功制备了锡/碳复合材料,并采用SEM、TEM、XRD和恒流充放电分析表征锡/碳复合材料的性能.结果表明:利用锡/碳复合材料的协同效应能够提升锂离子电池的容量和循环寿命,当锡/碳复合比为1∶1时,复合材料展现出了最优的循环性能,同时保持高的比容量,在220次循环后,电流密度100 m A/g下,电池比容量为550 m Ah/g,容量保持率达到95%以上,远大于石墨理论比容量372 m Ah/g,说明锡/碳复合材料能够有效提高锂离子电池的能量密度,并具有良好的循环性能. In order to improve the energy density of lithium-ion batteries, the tin/carbon composite was successfully prepared by low temperature oxidation-hydrothermal method. SEM, TEM, X-Ray diffraction (XRD) and galvanostatic charge-discharge experiments were used to characterize the tin/carbon composite. The results show that the synergistic effect of tin/carbon composite can enhance the capacity and cycle life of lithium-ion batteries. When the tin/carbon composite ratio is 1 颐 1, the material exhibits the best cycle performance while maintaining a high capacity, after 220 cycles it delivers the reversible capacity of 550 mAh/g, and the capacity retention of 95% at the current density of 100 mA/g. The capacity is much larger than the graphite theoretical specific capacity of 372 mAh/g. It illustrates that the tin/carbon composite materials can effectively improve the energy density of lithium-ion batteries, and has a good cycle performance.
出处 《天津工业大学学报》 北大核心 2017年第4期43-47,共5页 Journal of Tiangong University
基金 国家自然科学基金资助项目(51603147) 天津市自然科学基金资助项目(14RCHZGX00859 14JCQNJC07200 15ZCZDGX00270)
关键词 水热法 膨胀碳微球 二氧化锡 复合材料 电化学性能 锂离子电池 hydrothermal method expanded mesocarbon microbeads tin dioxide composite electrochemical properties lithium ion battery
  • 相关文献

参考文献4

二级参考文献54

  • 1李同起,王成扬,郑嘉明,王慧.非均相成核中间相炭微球的形成过程及其结构演变[J].新型炭材料,2004,19(4):281-288. 被引量:29
  • 2[1]FAUTEUX D, KOKSBANG R. Rechargeable lithium battery anodes: alternatives to metallic lithium[J]. J Appl Electrochem, 1993,23:1-10.
  • 3[2]MASKELL W C, OWEN J R. Cycling behavior of thin film LiAl electrodes with liquid and solid electrolytes[J]. J Electrochem Soc, 1985,132:1 602-1 605.
  • 4[3]IDOTA Y, KUBOTA T, MATSUFUJI A, et al. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material[J]. Science, 1997,276:1 395-1 401.
  • 5[4]YANG J, TAKEDA Y, IMANISHI N, et al. Ultrafine Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries[J]. J Electrochem Soc, 1999,146:4 009-4 013.
  • 6[5]COURTNEY I A, DAHN J R. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass[J]. J Electrochem Soc, 1997,144:2 943-2 946.
  • 7[6]MARCEL C, HEGDE M S, ROUGIER A, et al. Electrochromic properties of antimony tin oxide(ATO) thin films synthesized by pulsed laser deposition[J]. Electrochimica Acta,2001,46(13-14):2 097-2 104.
  • 8[7]SHI Li-hong, LI Hong, LU Wei, et al. Electrochemical performance of nano-SnSb alloy deposited on carbon as anode active materials for Li ion batteries[A]. Proceedings of the 7th Asian Conference on Solid State Ionics[C]. Fuzhou China:2000.357-360.
  • 9[8]LEE Jim-yang, ZHANG Rui-feng, LIU Zhao-lin. Dispersion of Sn and SnO on carbon anodes[J]. Journal of Power Sources, 2000,90:70-75.
  • 10[9]YANG J, WACHTLER M, WINTER M, et al. Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 1999,2:161-166.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部