期刊文献+

极端嗜热α-淀粉酶ApkA的高温活性和热稳定性的优化研究 被引量:3

Optimization of the Thermal Activity and Stability of Hyperthermophilic α-amylase ApkA
下载PDF
导出
摘要 旨在获得高温活性和热稳定性提高的α-淀粉酶。通过向α-淀粉酶Apk A中引入目前已知的最稳定的α-淀粉酶PFA的Zn^(2+)结合位点,获得Zn^(2+)结合位点突变体ApkAds K152H/A166C。酶学性质分析表明,ApkAds K152H/A166C的高温活性和热稳定性明显提高,最适反应温度由90℃提高至100℃,对应的酶比活力为5 201.08 U/mg。ApkAds K152H/A166C于90℃的半衰期由5 h延长至10 h,于100℃的半衰期由7.5 min延长至80 min。重组α-淀粉酶中Zn^(2+)含量测定结果显示ApkAds K152H/A166C结合了一个Zn^(2+)。结果表明,向ApkA中引入Zn^(2+)结合位点有利于提高其高温活性和热稳定性。 This work aims to obtain α-amylase with improved thermal activity and stability. Based on the structure analysis ofhyperthermophilic α-amylase Apk A and the most thermo-stable α-amylase PFA,a Zn^(2+)-binding site mutant Apk Ads K152H/A166 C wasconstructed by introducing the Zn^(2+)-binding site of PFA into Apk A. The mutant Apk Ads K152H/A166 C exhibited effective increase in terms ofthermal activity and stability. The optimal temperature of the mutant increased from 90℃ to 100℃ and the corresponding specific activity was 5201.08 U/mg. The half-life of Apk Ads K152H/A166 C prolonged from 5 h to 10 h while incubated at 90℃,and from 7.5 min to 80 min at 100℃.The results of Zn^(2+) content measurement in recombinant α-amylases confirmed that Apk Ads K152H/A166 C bound with one Zn^(2+) ion. Theseresults suggested that the introduction of Zn^(2+)-binding site improved the thermal activity and stability of Apk A.
出处 《生物技术通报》 CAS CSCD 北大核心 2017年第8期192-198,共7页 Biotechnology Bulletin
基金 国家自然科学基金青年科学基金项目(31501422) 江西省青年科学基金项目(20171BAB214003) 江西省科学院资助项目(2014-YYB-08 2014-XTPH1-08)
关键词 极端嗜热α-淀粉酶 Zn2+-结合位点 定点突变 高温活性 热稳定性 hyperthermophilic α-amylase Zn2+-binding site site-directed mutagenesis thermo-activity thermostability
  • 相关文献

参考文献4

二级参考文献65

  • 1郭建强,李运敏,岳丽丽,邱阳生,矫庆华.超耐热酸性α-淀粉酶基因的克隆及其在酵母细胞中的表达[J].生物工程学报,2006,22(2):237-242. 被引量:30
  • 2UJADAS G,PALAU J.TIM barrel fold:structural,functional andevolutionary characteristics in natural and designed molecules[J].Biologia(Bratislava),1999,54(3):231-254.
  • 3FRIEDBERG F.On the primary structure of amylases[J].FEBS Lett,1983,152(2):139-140.
  • 4NAKAJIMA R,IMANAKA T,AIBA S.Comparison of amino acidsequences of eleven differentα-amylases[J].Appl Microbiol Biotechnol,1986,23(5):355-360.
  • 5VIHINEN M,MA..NTSA..LA..P.Microbial amylolytic enzymes[J].CritRev Biochem Mol Biol,1989,24(4):329-418.
  • 6JANECEK S.Sequences similarities and evolutionary relationships ofmicrobial,plant and animalα-amylases[J].Eur J Biochem,1994,224(2):519-524.
  • 7JANECEK S.Alpha-amylase family:molecular biology and evolution[J].Progr Biophys Mol Biol,1997,67(1):67-97.
  • 8MACGREGOR E A.Relationships between structure and activity in theα-amylase family of starch-metabolising enzymes[J].Starch-starke,1993,45(7):232-237.
  • 9PUJADAS G,PALAU J.Independent folding of the A and B domains inthe alpha-amylase family[J].Biologia,2002,57(11):43-57.
  • 10RICHARDSON T H,TAN X,FREY G,et al.A novel,high perfor-mance enzyme for starch liquefaction:discovery and optimization of alow pH,thermostable alpha-amylase[J].J Biol Chem,2002,277(29):26501-26507.

共引文献14

同被引文献25

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部