期刊文献+

ENSEMBLE OF MULTIPLE kNN CLASSIFIERS FOR SOCIETAL RISK CLASSIFICATION 被引量:1

ENSEMBLE OF MULTIPLE kNN CLASSIFIERS FOR SOCIETAL RISK CLASSIFICATION
原文传递
导出
摘要 Societal risk classification is a fundamental and complex issue for societal risk perception. To conduct societal risk classification, Tianya Forum posts are selected as the data source, and four kinds of representations: string representation, term-frequency representation, TF-IDF representation and the distributed representation of BBS posts are applied. Using edit distance or cosine similarity as distance metric, four k-Nearest Neighbor (kNN) classifiers based on different representations are developed and compared. Owing to the priority of word order and semantic extraction of the neural network model Paragraph Vector, kNN based on the distributed representation generated by Paragraph Vector (kNN-PV) shows effectiveness for societal risk classification. Furthermore, to improve the performance of societal risk classification, through different weights, kNN-PV is combined with other three kNN classifiers as an ensemble model. Through brute force grid search method, the optimal weights are assigned to different kNN classifiers. Compared with kNN-PV, the experimental results reveal that Macro-F of the ensemble method is significantly improved for societal risk classification. Societal risk classification is a fundamental and complex issue for societal risk perception. To conduct societal risk classification, Tianya Forum posts are selected as the data source, and four kinds of representations: string representation, term-frequency representation, TF-IDF representation and the distributed representation of BBS posts are applied. Using edit distance or cosine similarity as distance metric, four k-Nearest Neighbor (kNN) classifiers based on different representations are developed and compared. Owing to the priority of word order and semantic extraction of the neural network model Paragraph Vector, kNN based on the distributed representation generated by Paragraph Vector (kNN-PV) shows effectiveness for societal risk classification. Furthermore, to improve the performance of societal risk classification, through different weights, kNN-PV is combined with other three kNN classifiers as an ensemble model. Through brute force grid search method, the optimal weights are assigned to different kNN classifiers. Compared with kNN-PV, the experimental results reveal that Macro-F of the ensemble method is significantly improved for societal risk classification.
出处 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2017年第4期433-447,共15页 系统科学与系统工程学报(英文版)
基金 This study is supported by the National Key Research and Development Program of China under grant No. 2016YFB1000902 and National Natural Science Foundation of China under grant Nos. 61473284, 71601023 and 71371107.
关键词 Societal risk classification Tianya Forum k-Nearest Neighbor ENSEMBLE Paragraph Vector Societal risk classification, Tianya Forum, k-Nearest Neighbor, ensemble, Paragraph Vector
  • 相关文献

参考文献2

二级参考文献10

共引文献15

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部