摘要
Societal risk classification is a fundamental and complex issue for societal risk perception. To conduct societal risk classification, Tianya Forum posts are selected as the data source, and four kinds of representations: string representation, term-frequency representation, TF-IDF representation and the distributed representation of BBS posts are applied. Using edit distance or cosine similarity as distance metric, four k-Nearest Neighbor (kNN) classifiers based on different representations are developed and compared. Owing to the priority of word order and semantic extraction of the neural network model Paragraph Vector, kNN based on the distributed representation generated by Paragraph Vector (kNN-PV) shows effectiveness for societal risk classification. Furthermore, to improve the performance of societal risk classification, through different weights, kNN-PV is combined with other three kNN classifiers as an ensemble model. Through brute force grid search method, the optimal weights are assigned to different kNN classifiers. Compared with kNN-PV, the experimental results reveal that Macro-F of the ensemble method is significantly improved for societal risk classification.
Societal risk classification is a fundamental and complex issue for societal risk perception. To conduct societal risk classification, Tianya Forum posts are selected as the data source, and four kinds of representations: string representation, term-frequency representation, TF-IDF representation and the distributed representation of BBS posts are applied. Using edit distance or cosine similarity as distance metric, four k-Nearest Neighbor (kNN) classifiers based on different representations are developed and compared. Owing to the priority of word order and semantic extraction of the neural network model Paragraph Vector, kNN based on the distributed representation generated by Paragraph Vector (kNN-PV) shows effectiveness for societal risk classification. Furthermore, to improve the performance of societal risk classification, through different weights, kNN-PV is combined with other three kNN classifiers as an ensemble model. Through brute force grid search method, the optimal weights are assigned to different kNN classifiers. Compared with kNN-PV, the experimental results reveal that Macro-F of the ensemble method is significantly improved for societal risk classification.
基金
This study is supported by the National Key Research and Development Program of China under grant No. 2016YFB1000902 and National Natural Science Foundation of China under grant Nos. 61473284, 71601023 and 71371107.