期刊文献+

基于动态和静态环境对象观测一致性约束的移动机器人多传感器标定优化方法 被引量:9

Muli-sensor Calibration Optimization Method of Mobile Robot Based on Stationary and Moving Object Observation Consistency Constraint
下载PDF
导出
摘要 为了解决机器人未知环境导航过程中的多源、异构传感器空间一致性观测问题,提出了基于动态和静态环境对象观测一致性约束的摄像机与激光测距传感器联合标定优化方法。利用协方差交集方法实现运动目标图像平面方向状态融合,同时采用卡尔曼滤波和概率数据关联滤波实现一对一和一对多信息源的静态角点特征图像平面方向状态融合;在此基础上,利用动态和静态物体融合前与融合后状态误差构造优化目标函数,并利用非线性优化方法实现标定参数优化。实验结果表明,该设计方法能够提高多传感器环境观测的一致性水平,验证了该方法的有效性。 A calibration optimization method of camera and laser rangefinder based on stationary and moving object observation consistency constraint is proposed to address the problem of spatial observation consistency from heterogeneous multi-sensor in the process of mobile robot navigation in unknown environ- ment. A covariance intersection method is used to fuse the bearing state of moving object on image plane, and Kalman and probabilistic data association filters are used to resolve the bearing state fusion of corner feature in the situations of " one-to-one" and " one-to-many". On this basis, the objective function is generated using the bearing errors before and after fusion of image projections of stationary and moving ob- jects, and the calibration parameters of camera and laser rangefinder are optimized using nonlinear opti- mization method. Experimental results show that the proposed method can be used to improve the obser- vation consistency of multi-sensor, and the effectiveness of the mentioned methods is verified.
机构地区 火箭军工程大学
出处 《兵工学报》 EI CAS CSCD 北大核心 2017年第8期1630-1641,共12页 Acta Armamentarii
基金 国家自然科学基金项目(61503389) 陕西省自然科学基金项目(2016JM6061)
关键词 控制科学与技术 机器人同时定位与地图构建 目标跟踪 多传感器标定 多传感器信息融合 control science and technology SLAM object tracking multi-sensor calibration muhi- sensor information fusion
  • 相关文献

参考文献2

二级参考文献23

  • 1刘元坤,苏显渝.基于傅里叶条纹分析的摄像机标定[J].四川大学学报(工程科学版),2007,39(6):149-153. 被引量:17
  • 2Z Zhang. A flexible new technique for camera calibration [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions, 2000,22(11) :1330-1334.
  • 3F Remondino, C Fraser. Digital camera calibration methods: considerations and comparisons [J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2006, 36(5): 266-272.
  • 4X Meng, Z Hu. A new easy camera calibration technique based on circular points [J]. Pattern Recognition, 2003, 36 (5) : 1155-1164.
  • 5Q Chen, H Wu, T Wada. Camera Calibration with Two Arbitrary Coplanar Circles [M]. Berlin Hedelberg: Springer, 2004. 521-532.
  • 6Y Liu, X Su. Camera calibration with planar crossed fringe patterns [J]. Optik-International Journal for Light and Electron Optics, 2012, 123(2): 171-175.
  • 7D Huang, Q Zhao, W Wang, et al.. A calibration method of multi-camera pose based on monocular vision [C]. The 1st International Conference on Industrial Application Engineering 2013 (ICIAE2013), 2013.
  • 8J Y Bouguet. Camera calibration toolbox for matlab. 2004. http://www, vision, caltech, edu/bouguetj/calib_doc.
  • 9M Shimizu, M Okutomi. Precise sub-pixel estimation on area-based matching [J]. Systems and Computers in Japan, 2002, 33 (7): 1-10.
  • 10X Su. Phase unwrapping techniques for 3D shape measurement [C]. International Conference on Holography and Optical Information Processing, International Society for Optics and Photonics, 1996:460-465.

共引文献19

同被引文献81

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部