期刊文献+

核磁共振陀螺仪研究进展 被引量:9

Research Progress in Nuclear Magnetic Resonance Gyroscopes
下载PDF
导出
摘要 核磁共振陀螺(NMRG)是基于量子原理的陀螺仪,具有高精度、体积小、抗干扰能力强等特点,是陀螺仪发展的重点方向之一。简要回顾了核磁共振陀螺的发展历史,介绍了20世纪有代表性的研究成果。叙述了核磁共振陀螺的基本工作原理和硬件系统构成。按照4种不同的技术路径:微型核磁共振陀螺、无自旋弛豫交换(SERF)核自旋陀螺、芯片级组合原子导航仪和基于金刚石氮空位的核磁共振陀螺,重点阐述近年来国外研究机构在核磁共振陀螺研究领域取得的最新成果,之后再介绍了近年来国内研究机构取得的主要研究成果。最后总结了核磁共振陀螺技术的最新发展趋势。 The nuclear magnetic resonance gyroscope (NMRG) based on the quantum principle has features of high precision, compact size, strong anti-interference ability and so on, and is one of the most important development directions of gyroscopes. The development history of the NMRG is briefly reviewed, and the representative researches in the 20^th century are introduced. The basic operational principle and hardware system structure of the NMRG are described. The newest research achievements of the NMRG attained by foreign research institutes are mainly de- scribed according to four technical paths: micro-NMRG, spin exchange relaxation free (SERF) atomic spin gyroscope, chip-scale combinatorial atomic navigator (C-SCAN) and NMRG based on nitrogen-vacancy in diamond. The research achievements attained by domestic research institutes are also introduced. Finally, the development trend of the NMRG in the future is summarized.
作者 程翔 刘华 王昢 王帝 李绍良 赵万良 成宇翔 Cheng Xiang Liu Hua Wang Po Wang Di Li Shaoliang Zhao Wanliang Cheng Yuxiang(School of Electronic Information and Electrical Engineering, Shanghai J iaotong University, Shanghai 200240, China Shanghai Engineer Research Center of Inertia, Shanghai Key Laboratory of Space Intelligient Control Technology, Shanghai Institute of Spaceflight Control Technology, Shanghai 201109, China)
出处 《微纳电子技术》 北大核心 2017年第9期605-611,共7页 Micronanoelectronic Technology
基金 国家自然科学基金面上项目(31271069) 上海航天科技创新基金资助项目(SAST2016084)
关键词 核磁共振陀螺(NMRG) 原子自旋 原子陀螺 微陀螺仪 量子原理 nuclear magnetic resonance gyroscope (NMRG) atomic spin atomic gyroscope micro-gyroscope quantum principle
  • 相关文献

参考文献8

二级参考文献92

  • 1程向红,陈红梅,周雨青,万德钧.核磁共振陀螺仪分析及发展方向[J].中国惯性技术学报,2006,14(6):86-90. 被引量:12
  • 2彭岚,毛娜,王飞,周洋.双向温度梯度作用下Cz池内热对流的数值模拟[J].工程热物理学报,2015,36(6):1325-1328. 被引量:2
  • 3王逗.核磁共振原理及其应用[J].现代物理知识,2005,17(5):50-51. 被引量:15
  • 4[1]Woodman K F,Franks P W,Richards M D.The nuclear magnetic resonance gyroscope:A review[J].Navigation,1987,40:366-384.
  • 5[2]Karwacki F A.Nuclear magnetic resonance gyro development[J].Navigation,1980,27:72-78.
  • 6[3]Ivan A.Greenwood.Nuclear gyroscope with unequal fields[P].United States:4147974,Apr.3,1979.
  • 7[4]Bruce C.Grover,et al.Nuclear magnetic resonance gyro[P].United States:4157495,1979-07-05.
  • 8[5]Shaw G L.Modeling a cryogenic 3He nuclear gyro[D].Stanford University,1980.
  • 9[6]Kornack T W,Ghosh R K,Pomails M V.Nuclear spin gyroscope based on an atomic comagnetometer[J].Physical Review Letters,95,2005:230801.1-230801.4.
  • 10[7]Shaw G L,Taber M A.The 3He gyro for an all cryogenic inertial measurement unit[C]//Inertial Navigation System Symposium,Stuttgart,1983:14.0-14.13.

共引文献78

同被引文献49

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部