期刊文献+

在不同碱化剂溶液中TU48C钢的均匀腐蚀及流动加速腐蚀速率 被引量:10

Uniform Corrosion and Flow Accelerated Corrosion Rates of TU48C Steel in Different Alkalizer Solutions
下载PDF
导出
摘要 利用高温高压釜及自主研发的模拟核电二回路环境材料评估试验平台,研究了压水堆核电厂二回路用TU48C钢在氨(NH_3)、乙醇胺(ETA)碱化剂溶液中的均匀腐蚀速率以及在NH_3、ETA、质量比为1∶1的ETA+NH_3等3种碱化剂溶液中的流动加速腐蚀(FAC)速率。结果表明:在150℃下,TU48C钢在ETA和NH_3溶液中的均匀腐蚀速率相近,均随腐蚀时间的延长而降低;在给水pH(25℃)为9.7条件下,以NH_3作为碱化剂时,TU48C钢的FAC速率最大,以ETA为碱化剂时的最小,以ETA+NH_3为碱化剂的介于上述两者之间,且接近以ETA为碱化剂时的值;采用ETA或ETA+NH_3代替NH_3作碱化剂可以大幅度降低核电厂二回路汽水分离再热器疏水管的FAC速率。 Using the high-temperature autoclave and independently developed material evaluation test platform that can simulate the second circuit environment of the nuclear power plant,the uniform corrosion rates in NH3 and ethanolamine(ETA)alkalizer solutions and the flow accelerated corrosion rates in NH3,ETA,and in 1∶1 mass ratio of ETA and NH3 alkalizer solutions of TU48C steel,which was used for the second circuit of the pressurized water reactor of nuclear power plant,were researched,respectively.The results show that at 150 ℃,the uniform corrosion rate of TU48 Csteel in ETA solution was similar to that in NH3 solution,and both decreased with the increase of soaking time.When the pH(25 ℃)value of feeding water was 9.7,the FAC rate of TU48C steel was the highest with NH3 as alkalizer while the lowest with ETA as alkalizer.The FAC rate with ETA and NH3 as alkalizer was between those with the above two alkalizers,which was close to that with ETA as alkalizer.Substituting ETA or ETA+NH3 for NH3 can significantly reduce the FAC rate of the hydrophobic pipe of the moisture separator reheater in the second circuit of nuclear power plant.
出处 《机械工程材料》 CSCD 北大核心 2017年第8期80-83,共4页 Materials For Mechanical Engineering
关键词 碱化剂 流动加速腐蚀 均匀腐蚀 汽水分离再热器 alkalizer flow accelerated corrosion uniform corrosion moisture separator reheater
  • 相关文献

参考文献2

二级参考文献29

  • 1许维钧,马春来,沙仁礼.核工业中的腐蚀与防护[M].北京:化学工业出版社.1993.
  • 2Dooley R B, Chexal V K. Flow-accelerated corrosion of pressure vessels in fossil plants [J]. International Journal of Pressure Vessels and Piping, 2000, 77(2-3): 85-90.
  • 3Wilkowski G, Stephens D, Krishnaswamy P, et al. Progress in development of acceptance criteria for local thinned areas in pipe and piping components[J]. Nuclear Engineering and Design, 2000, 195: 149- 169.
  • 4Stanisa B, Schauperl Z, Grilec K. Erosion behaviour of turbine rotor blades installed in the Krsko nuclear power plant[J]. Wear, 2003, 254(7-8): 735-741.
  • 5Dooley R B, Chexal V K. Flow-accelerated corrosion of pressure vessels in fossil plants [J]. International Journal of Pressure Vessels and Piping, 2000, 77: 85-90.
  • 6Chexal B, Horowitz J, Dooley B, et al. Flow-accelerated corrosion in power plants[R]. EPRI TR-106611RI, Barleben: Electric Power Research" Institute, 1998.
  • 7Tipping P. Lifetime and ageing management of nuclear power plants: h brief overview of some light water reactor component ageing degradation problems and ways of mitigation [J]. International Journal of Pressure Vessels and Piping, 1996, 66: 17-25.
  • 8Lee N Y, Bahn C B, Lee S G, et al. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants [J]. Advances in Nondestructive Evaluation, 2004, 270(3): 2232-2238.
  • 9Ferreira Guimaraes A C. A new methodology for the study of FAC phenomenon based on a fuzzy rule system[J]. Annals of Nuclear Energy, 2003, 30(7): 853-864.
  • 10Ting K, Ma Y P. The evaluation of erosion/corrosion problems of carbon steel piping in Taiwan PWR nuclear power plant [J]. Nuclear Engineering and Design, 1999, 191: 231-243.

共引文献54

同被引文献89

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部