期刊文献+

前驱体浸渍法制备泡沫镍屈服强度与孔结构的关系

Relationship between yield strength and pore structure of nickel foam prepared by impregnation method
下载PDF
导出
摘要 采用有限元模拟技术计算不同孔结构泡沫镍的屈服强度,并以气雾化Ni-20Cr合金粉末为原料,以不同孔径的聚氨酯泡沫为模板,控制浸渍工艺制备出不同孔径与不同密度的泡沫镍铬合金,研究合金屈服强度随密度与孔径尺寸的变化关系。有限元模拟计算结果表明,开孔泡沫金属材料的屈服强度符合Gibson-Ashby方程,在开孔泡沫金属材料密度一定的情况下,材料的屈服强度不随孔径的变化而变化。实验结果表明,对于相同孔径的泡沫金属材料,其屈服强度和相对密度的关系为σ/σs与相对密对(即ρ/ρs)的1.5次方呈线性关系(σ和σs分别为泡沫材料与致密材料的屈服强度;ρ和ρs分别为泡沫材料与致密材料的密度);而具有相同密度和不同孔径的泡沫镍铬合金,其屈服强度很接近,验证了开孔泡沫金属材料屈服强度随密度的变化规律符合Gibson-Ashby方程。 The yield strength of nickel foam with different pore structure were calculated by using finite element simulation. Nickel alloy foams with different density were prepared using polyurethane foam as precursor through controlling impregnation process. Relationship between pore size and yield strength of nickel chromium alloy foam was then studied. The simulation results show that the yield strength of open cell metal foam is in accordance with the Gibson-Ashby equation. That is, the yield strength of metal foam does not change with the pore size while the density of the foam material is constant. The experimental results show that for the metal foam with the same pore structure, the relationship between the yield strength and the relative density accords with Gibson-Ashby equation. And for nickel chromium alloy foam with same density and different pore size, the yield strength are very close to each other, which further verifies Gibson-Ashby equation.
出处 《粉末冶金材料科学与工程》 北大核心 2017年第4期585-589,共5页 Materials Science and Engineering of Powder Metallurgy
基金 国家高技术研究发展计划(863计划)资助项目(2015AA034304) 陕西省科技新星项目(2015KJXX78)
关键词 泡沫镍 有限元模拟 前驱体浸渍法 孔结构 屈服强度 nickel foam finite element simulation impregnation method pore structure yield strength
  • 相关文献

参考文献5

二级参考文献55

  • 1李虎,虞奇峰,张波,王辉,范红松,张兴栋.浆料发泡法制备生物活性多孔钛及其性能[J].稀有金属材料与工程,2006,35(1):154-157. 被引量:38
  • 2李众利,王岩,张国强,肖俊.新型三维连通多孔钛的制备及特性[J].生物骨科材料与临床研究,2007,4(1):1-4. 被引量:12
  • 3Davies G J, SHU Zhen. Development of nickel foam[J]. Material Science, 1983, 18(2): 1899-1911.
  • 4YAN De-yi, CUI Wei-guo. Preparation and properties of no-binder electrode Ni/MH battery[J]. Journal of Alloys and Compounds, 1999, 293: 780-783.
  • 5CHEN Wei-xiang. Effects of surface treatments of MlNi4.0Co0.6Al0.4 hydrogen storage alloy on the activation, charge/discharge cycle and degradation of Ni/MH batteries[J]. Journal of Power Sources, 2001, 92(1/2): 102-107.
  • 6MARRACINO J M, COEURETF, LANGI. OIS S. A first investigation of through porous electrodes made of metallic felts or foams[J]. Electrochemical Acta, 1987, 32(9): 1303-1309.
  • 7PATE P. Foam collector for electrochemical cells. US Patent: 6214490[P]. 2001-04-10.
  • 8KAMIJO E, MURAKAMI K, TANI K. Process for continuous production of porous metal. US Patent: 4326931[P]. 1982-04-27.
  • 9XIA Shen-ling, WU Hua, JIA Hui-qing. Study on technical specifications for high tensile continuous nickel foam: Proceedings of CIBF 2001; HUI Zhi-lin,ZHANG Jing-huai[C]. Beijing: China Industrial Association of Power Sources, 2001: 156-160.
  • 10陶维正,张宪铭,钟发平,等.GB/T20251-2006[P].电池用泡沫镍.2006.10.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部