期刊文献+

碳纳米管可控介电泳参数模拟研究

The Simulation Study on Controllable Dielectrophoresis Parameters of Carbon Nanotube
下载PDF
导出
摘要 碳纳米管的结构以及微电极的物性参数是微纳器件制备过程中影响介电泳效率与精度的重要因素。微电极形状和电极间距与碳纳米管长度之比(λ)是两个与器件制造成本紧密相关的可控介电泳参数。本文根据有限元方法,研究了这两个参数对于介电泳力的影响规律。通过对3种电极下的碳纳米管介电泳速度进行归一化处理,结果表明碳纳米管在分散液中的介电泳速度受电极形状影响较小。而相比于电极形状,λ对介电泳力的影响更加显著。虽然电极间距越小越有利于碳纳米管的组装,但是考虑微电极加工难度与成本,认为λ在0.5~1.0为碳纳米管组装的优化区间。根据介电泳组装实验需要,给出了溶液阈值浓度修正表达式。本研究对于提高介电泳组装效率和实验精度具有一定的理论指导意义。 The structure of carbon nanotube (CNT)and physical parameters of the microelectrode exert significant influence on the efficiency and precision of dielectrophoresis ( DEP ) assembly during the process of fabricating micro-nano devices. The shape of electrodes and the ratio of the gap between two electrodes to CNT lengths( A )are two controllable parameters which are crucial to the cost of devices fabrication. Based on the finite element method, the influence of DEP force affected by the two parameters was investigated. The result shows the shape of electrodes exerts minor influence on the DEP velocity by normalizing the DEP velocity curves of three electrodes. Parameter A affects DEP process obviously compared with the shape of electrodes. Although decreasing the gap between two e- lectrodes is more conducive to assembly,we give the optimum interval of λ is 0.5-1.0 considering the difficulty of processing microelectrode technology and cost. In addition, the revised formula of threshold concentration was also presented in the manuscript according to the requirement of assembly experiment. The paper has a theoretical signif- icance in improving the precision and efficiency of DEP assembly.
出处 《传感技术学报》 CAS CSCD 北大核心 2017年第6期826-830,共5页 Chinese Journal of Sensors and Actuators
基金 山西省基础研究计划项目(2015021092) 国家863项目(2015AA042601) 国家自然科学基金重点支持项目(61471255 61474079)
关键词 电极形状 电极间距与碳纳米管长度之比 介电泳力 优化区间 阈值浓度 the ship of electrodes the ratio of the gap between two electrodes to CNT lengths DEP force optimuminterval threshold concentration
  • 相关文献

参考文献11

二级参考文献105

  • 1李玉魁,李德昌,朱长纯.新型阴极粘贴技术制备三极CNT-FED的研究[J].西安电子科技大学学报,2005,32(2):314-317. 被引量:3
  • 2李德昌,李玉魁,李昕,朱长纯.碳纳米管薄膜阴极的制备及分析[J].西安电子科技大学学报,2005,32(6):877-880. 被引量:3
  • 3谭苗苗,叶雄英,王晓浩,周兆英.利用DEP和流体驱动的碳纳米管组装研究[J].传感技术学报,2006,19(05B):2030-2033. 被引量:4
  • 4[1]Pohl H.Dielectrophoresis[M].New York:Cambridge University Press,1978.
  • 5[2]Arnold W M,Zimmermannn U.Electrorotation:Development of a Technique for Dielectric Measurements on Individual Cells and Particles[J].Electrostatics,1988,21(2):151-191.
  • 6[3]Masuda S,Washizu M,Nanba T,Novel Method of Cell Fusion in Field Construction Area in Fluid Integrated Circuit[J].IEEE Transactions on Industry Applications,1989,25(4):732-737.
  • 7[4]Schnelle T,Muller T and Fuhr G,Trapping in AC Octode Field Cages[J].J.Electrostatics 57(2003),17-29.
  • 8[5]Voldman J,Toner M,Gray M L and Schmidt M A,Design and Analysis of Extruded Quadrupolar Dielectrophoretic Traps[J],J.Electrostatics 57(2003),69-90.
  • 9[6]Huang Y,Wang X B,Tame J,et al.Electrokinetic Behaviour of Colloidal Particles in Travelling Electric Fields:Studies Using Yeast Cells[J].J Phys D Appl Phys,1993,26(9):312-322.
  • 10[7]Masuda S,Washizu M and Kawabata I Movement of Blood Cells in Liquid by Nonuniform Travelling Field[J].IEEE Trans.Ind.Appl.1988,24(2),217-222.

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部