期刊文献+

Dual submanifolds in rational homology spheres 被引量:1

Dual submanifolds in rational homology spheres
原文传递
导出
摘要 Let E be a simply connected rational homology sphere. A pair of disjoint closed submanifolds M+, M_ C + are called dual to each other if the complement ~ - M+ strongly homotopy retracts onto M- or vice-versa. In this paper, we are concerned with the basic problem of which integral triples (n; m+, m-) E Na can appear, where n : dime - 1 and m+ = codimM~ - 1. The problem is motivated by several fundamental aspects in differential geometry. (i) The theory of isoparametric/I)upin hypersurfaces in the unit sphere Sn+l initiated by ]~lie Cartan, where M=t= are the focal manifolds of the isoparametric/Dupin hypersurface M C Snq-1, and m~= coincide with the multiplicities of principal curvatures of M. (ii) The Grove-Ziller construction of non-negatively curved Riemannian metrics on the Milnor exotic spheres ~, i.e., total spaces of smooth S3-bundles over $4 homeomorphic but not diffeomorphic to S7, where M~ P~ ~so(4) $3, P -+ $4 the principal SO(4)-bundle of ~ and P~ the singular orbits of a cohomogeneity one SO(4) ~ SO(3)-action on P which are both of codimension 2. Based on the important result of Grove-Halperin, we provide a surprisingly simple answer, namely, if and only if one of the following holds true:m+ =m- =n; 1 {1, 2,4, 8}; m+=m_=1/3n∈ {1,2}; m+=m_=1/4n∈{1,2}; m+=m_=1/6n∈{1,2}; n In addition, if E is a homotopy sphere and the ratio n/m+m-2 (for simplicity let us assume 2 ≤ m_ 〈 m+), we observe that the work of Stolz on the multiplicities of isoparametric hypersurfaces applies almost identically to conclude that, the pair can be realized if and only if, either (m+, m_) = (5, 4) or m+ + m- + 1 is divisible by the integer 5(m_) (see the table on Page 1551), which is equivalent to the existence of (m- - 1) linearly independent vector fields on the sphere Sin++m- by Adams' celebrated work. In contrast, infinitely many counterexamples are given if E is a rational homology sphere. Let Σ be a simply connected rational homology sphere. A pair of disjoint closed submanifolds M_+, M_-? Σ are called dual to each other if the complement Σ-M_+ strongly homotopy retracts onto M_- or vice-versa. In this paper, we are concerned with the basic problem of which integral triples(n; m_+, m-) ∈ N^3 can appear, where n = dimΣ-1 and m_± = codim M_±-1. The problem is motivated by several fundamental aspects in differential geometry.(i) The theory of isoparametric/Dupin hypersurfaces in the unit sphere S^(n+1) initiated by′Elie Cartan, where M_± are the focal manifolds of the isoparametric/Dupin hypersurface M ? S^(n+1), and m± coincide with the multiplicities of principal curvatures of M.(ii) The Grove-Ziller construction of non-negatively curved Riemannian metrics on the Milnor exotic spheres Σ,i.e., total spaces of smooth S^3-bundles over S^4 homeomorphic but not diffeomorphic to S^7, where M_± =P_±×_(SO(4))S^3, P → S^4 the principal SO(4)-bundle of Σ and P_± the singular orbits of a cohomogeneity one SO(4) × SO(3)-action on P which are both of codimension 2.Based on the important result of Grove-Halperin, we provide a surprisingly simple answer, namely, if and only if one of the following holds true:· m_+ = m_-= n;· m_+ = m_-=1/3n ∈ {1, 2, 4, 8};· m_+ = m_-=1/4n ∈ {1, 2};· m_+ = m_-=1/6n ∈ {1, 2};·n/(m_++m_-)= 1 or 2, and for the latter case, m_+ + m_-is odd if min(m_+, m_-)≥2.In addition, if Σ is a homotopy sphere and the ratio n/(m_++m_-)= 2(for simplicity let us assume 2 m_-< m_+),we observe that the work of Stolz on the multiplicities of isoparametric hypersurfaces applies almost identically to conclude that, the pair can be realized if and only if, either(m_+, m_-) =(5, 4) or m_+ + m_-+ 1 is divisible by the integer δ(m_-)(see the table on Page 1551), which is equivalent to the existence of(m_--1) linearly independent vector fields on the sphere S^(m_++m_-)by Adams' celebrated work. In contrast, infinitely many counterexamples are given if Σ is a rational homology sphere.
作者 FANG FuQuan
出处 《Science China Mathematics》 SCIE CSCD 2017年第9期1549-1560,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11431009) the Ministry of Education in China,and the Municipal Administration of Beijing
关键词 rational homology sphere dual submanifold cohomogeneity one action isoparametric hypersurface 闭子流形 同调 有理 Dupin超曲面 Cartan simple vector 微分同胚
  • 相关文献

参考文献1

共引文献4

同被引文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部