摘要
This paper is concerned with approximation of eigenvalues below the essential spectra of singular second-order symmetric linear difference equations with at least one endpoint in the limit point case. A sufficient condition is firstly given for that the k-th eigenvalue of a self-adjoint subspace (relation) below its essential spectrum is exactly the limit of the k-th eigenvalues of a sequence of self-adjoint subspaces. Then, by applying it to singular second-order symmetric linear difference equations, the approximation of eigenvalues below the essential spectra is obtained, i.e., for any given self-adjoint subspace extension of the corresponding minimal subspaee, its k-th eigenvalue below its essential spectrum is exactly the limit of the k-th eigenvalues of a sequence of constructed induced regular self-adjoint subspace extensions.
This paper is concerned with approximation of eigenvalues below the essential spectra of singular second-order symmetric linear difference equations with at least one endpoint in the limit point case. A sufficient condition is firstly given for that the k-th eigenvalue of a self-adjoint subspace(relation) below its essential spectrum is exactly the limit of the k-th eigenvalues of a sequence of self-adjoint subspaces. Then, by applying it to singular second-order symmetric linear difference equations, the approximation of eigenvalues below the essential spectra is obtained, i.e., for any given self-adjoint subspace extension of the corresponding minimal subspace, its k-th eigenvalue below its essential spectrum is exactly the limit of the k-th eigenvalues of a sequence of constructed induced regular self-adjoint subspace extensions.
基金
supported by National Natural Science Foundation of China(Grant No.11571202)
the China Scholarship Council(Grant No.201406220019)