期刊文献+

关于雷达目标跟踪任务优先级设计

On the Design of Radar Target Tracking Task Priority
下载PDF
导出
摘要 为了提升雷达的跟踪性能,针对雷达多目标跟踪时传统跟踪任务优先级设计方法无法保证对重要目标跟踪的问题,提出了一种基于BP神经网络的跟踪任务优先级设计方法。方法利用目标参数以及雷达性能参数直接对目标的跟踪任务优先级进行综合评判,并采用BP神经网络对参数和跟踪任务优先级之间进行函数关系逼近,实现对优先级的快速实时设计。最后将该方法与基于模糊逻辑的跟踪任务优先级设计方法进行对比仿真,仿真结果证明了上述方法的有效性和优越性。 In order to improve the tracking performance of radar, aim at the problem that the traditional method of tracking task priority designing cannot ensure that radar always tracks important targets under multi -target tracking, a method based on the BP neural network model is given in the paper. The method used the target parameters and the performance parameter of radar to comprehensively judge the priority of the target tracking task directly, and adopted BP neural network to realize the function approximate between the parameters and tracking task priority, and to real- ize rapid real - time design of tracking task priority. Finally, compared with the method based on the fuzzy logic, the method in this paper was simulated. The analysis resuh proves the effectiveness and superiority of the method.
机构地区 空军工程大学
出处 《计算机仿真》 北大核心 2017年第8期27-32,共6页 Computer Simulation
基金 国家自然科学基金(61601499)
关键词 跟踪任务优先级 误差反向传播神经网络模型 目标参数 雷达性能参数 Priority of the radar tracking task BP neural network model Target parameter Performance parameterof radar
  • 相关文献

参考文献3

二级参考文献22

  • 1钟芳挺,刘超,金茂忠.程序动态分析系统中插装方式的改进[J].计算机工程与设计,2007,28(19):4585-4588. 被引量:6
  • 2飞思科技产品研发中心编著神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 3Weiser M. Program slicing [ J ]. IEEE Transac - ion on Software En- gineering, 1984,10 (5) :498 - 509.
  • 4W. Eric Wong, Yu Qi. BP Neural Network - -Based Effective Fault Localization. International Journal of Software Engineering and Knowledge Engineering[J], 2009, 19(4) :573 -597.
  • 5A. Groce, Error explanation with distance metrics. In TACAS volume 2988 of Lecture Notes inComputer Science Springer, 2004.
  • 6Liang Guo, Abhik Roychoudhury, and Tao Wang. Accuratelychoosing execution runs forsoftware fault localization. In Alan My - croft and Andreas Zeller, editors, 15 th, Inter - nationalConfer- ence on Compiler Construction, volume 3923 of Lecture Notes in Computer Science. Springer, 2006.
  • 7L. Fausett, Fundamentals of Neural Networks : Architectures, Al- gorithms, and Appli - cations ( Prentice - Hall, 1994 ).
  • 8R. Heeht - Nielsen, Theory of the backpropa - gation neural net- work, Proceedings of 1989 International Joint Conference on Neu- ral Net-works, Washington, DC, 1989, pp. 593 - 605.
  • 9James A. Jones, Mary Jean Hanald, John, et al. Visualization of test informationto assist fault localization, 2002. ICSE: 467 - 477.
  • 10James A. Jones, Mary Jean Harrold. Empiri - cal evaluation of the tarantulaautomatic fault - localization technique, 2005. ASE; 273 - 282.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部