期刊文献+

四旋翼无人机的姿态稳定控制器设计仿真 被引量:6

Design and Simulation of Attitude Stabilization Controller for Quadrotor UAV
下载PDF
导出
摘要 通常无人机系统是不稳定的,姿态稳定控制至关重要,维持姿态的稳定可以保证安全性、更好的飞行体验、成功地执行任务。非线性特性导致姿态稳定控制成为难点,国内外研究人员致力于寻找合适的方法来解决这一问题,为此提出了一种模糊PID的新型复合控制算法用来稳定四旋翼无人机姿态。该算法能够实时更新PID控制器的比例、积分、微分参数Kp、Ki、Kd,从而稳定四旋翼的姿态。为了研究这种新型复合算法的性能,对四旋翼进行建模后,利用MATLAB对其进行仿真,并与传统PID进行对比。仿真结果表明,在响应时间以及调节时间上,其性能比传统PID更加优越。 Usually UAV systems are unstable and attitude stabilization control plays a very important role. To maintain the stability of the attitude can ensure safety, better flight experience, the successful implementation of the task. Nonlinear characteristics of attitude stability control is a difficult problem, researchers at home and abroad are working on finding the right solution to this problem, so we present a new adaptive hybrid Fuzzy Logic based PID Con- trol algorithm for attitude stabilization of quadrotor. The algorithm can real - time update PID controller proportional, integral and differential parameters Kp, Ki, Kd, so as to stabilize quadrotor's attitude. In order to study this new hybrid algorithm, after modeling the quadrotor, it is simulated on MATLAB and compared with conventional PID controller. Simulation results proves that the proposed adaptive hybrid Fuzzy Logic based PID controller has better results in the term of response time and settling time than the conventional PID controller.
作者 宋宇 宋隽炜
出处 《计算机仿真》 北大核心 2017年第8期85-88,共4页 Computer Simulation
关键词 四旋翼 姿态稳定 模糊逻辑 Quadrotor Attitude stabilization Fuzzy logic
  • 相关文献

参考文献4

二级参考文献55

  • 1[5]DOITSIDIS L,VALAVANIS K P,TSOURVELOUDIS N C,et al.A framework for fuzzy logic based UAV navigation and control[C]// Proceeding of the 2004 IEEE International Conference on Robotics & Automation.New Orleans,2004:4041-4046.
  • 2[9]PEI Jian,ZHAO Liming,WANG Dejun,et al.Fuzzy PID control of traction system for vehicles[C]// Proceedings of the Fourth International Conference on Machine Learning and Cybernetics.Guangzhou,China,2005:773-777.
  • 3M Ohno. Robust Flight Control Law Design for Antematic Landing Flight Experiment[C]. Pinc. of the 14th International Federation of Automatic Gontrol Symposinm on Autonatic Control in Aerospace, 1998. 259- 264.
  • 4Marconi L, Isidori A. Robust Output Regulation for Autonnmons Vertical Landing[C]. Proc. of the 39# Conference on Decision & Control,2000. 3590 - 3595.
  • 5Sharp Courtney S, Shakernia O, Sastry Shankar S. A Vision System for Landing an Unmanned Aerial Vehicle[C]. Proc. of the IEEE Conference on Robotics& Automation, 2001. 1720- 1727.
  • 6Pachter M, Chandler P R. Challenges of Autonomous Control[J]. IEEEControl Systems Magazine, 1998, 18(4): 92-97.?A
  • 7Chandler P R, Pachter M. Research Issues in Autonomous Control of Tactical UAVs[C]. Proc. of the American Control Conference, 1998. 394-398.
  • 8McColey M W, Piedmonte Michael D, Appleby Brent D, et al. Hybrid Control for Aggressive Maneuvering of Autonomous Aerial Vehicles[C]. Proc. of the 19th Digital Avionics Systems Conference, 2000:I.E.4-1 - 1.E.4-8.
  • 9Frazzoli Emilio. Robust Hybrid Control for Autonomous Vehicle Motion Planning[D]. Massachusetts Institute of Technology, 2001.
  • 10Vachtsevanos G, Kim W, A1-Hasan S, et al. Autonomous Vehicles: From Flight Control to Mission Planning Using Fuzzy Logic Techniques [C]. Proc. of the 13th International Digital Signal Processing Confereuce, 1997. 977-981.

共引文献74

同被引文献77

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部