期刊文献+

基于菲涅尔理论的非训练式指纹定位法 被引量:1

Fingerprint matching localization with non offline training based on fresnel theory
下载PDF
导出
摘要 针对免携带设备定位(device free localization,DFL)中,无线层析成像法(radio tomographic imaging,RTI)在线重构速度慢,指纹法(fingerprint matching,FM)离线训练量大,复杂度高等问题,提出了一种基于菲涅尔理论的非训练式指纹法。所提出的定位算法改变了传统指纹法需要实际测量的离线训练模式,采用非训练模式建立参考指纹库,降低时间复杂度,并模拟实际测量环境对参考指纹库进行误差修正,减弱环境的干扰,最后用加权K最近邻域法实现对目标位置的估计。在保证定位匹配速度的同时,满足定位精度的要求。 Device-free localization(DFL)is to estimate the location of object without carrying any electronic device.In allusion to problems such as low reconstruction speed of traditional radio tomographic imaging(RTI),massive store capacity and time complexity of offline training in traditional fingerprint matching(FM)etc.,this paper proposed a localization estimation method with non offline training based on the theory of Fresnel.Firstly change of received signal strength(RSS)of links under the Fresnel region will be calculated,then change of RSS will be modified for satisfying some reality constraints,reference fingerprint database will be established.By establishing fingerprint database,capacity of training fingerprint database can be reduced effectively.Error of actual environment will be taken into consideration and correction will be made to weaken the environmental disturbances.Finally K-nearest neighborhood algorithm will be applied to the target positioning estimation.The simulation results show that this method not only can ensure the positioning speed while matching,but also can ensure positioning accuracy.
出处 《电子测量技术》 2017年第7期146-151,169,共7页 Electronic Measurement Technology
基金 上海市自然科学基金(15ZR1415500) 国家自然基金(61501288 61571279)资助项目
关键词 免携带设备定位 菲涅尔理论 指纹法 非训练 device-free localization fresnel theory fingerprint matching non offline training
  • 相关文献

参考文献5

二级参考文献46

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 2Akyildiz L F, Su W Sensor Networks [ J ] (8) :102-114. Y, et al. A Survey on IEEE Communications Magazine, 2002,40.
  • 3Xiao J, Ren L R, Tan J D. Research of TDOA Based Self- Localization Approach in Wireless Sensor Network [ J]. Intelli-Gent Robots and Systems ,2006, ( 10 ) :2035-2040.
  • 4Li M, Liu Y H. Rendered Path: Range-Free Localization in Anisotropic Sensor Networks with Holes [ J ]. IEEE/ACMTransactions on Networking ,2010,18 ( l ) :320-332.
  • 5Niculescu D, Nath B. DV Based Positioning in ad hoc Networks [ J ]. Journal of Telecommunication Systems,2003:22 ( 1-4 ) :267 -280.
  • 6Niculeseu D, Nath B. Ad hoc Positioning System (APS)Using AOA [ C ]//INFOCOM 2003. 22nd Annual Joint Conference of the IEEE Computer and Communications. San Francisco, USA,2003. IEEE Societies ( 3 ), 1734-1743.
  • 7He T,Huang C ,Blum B M,et al. Range-Free Localization Schemes for Large Scale Sensor Networks [ C ]//Proeeedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego,2003. ACM Press, 81-95.
  • 8Tomioka Y, Takara A, and Kitazawa H. Generation of an optimum patrol course for mobile surveillance camera[J[. IEEE Transactions on Circuits and Systems ]or Video Technology, 2012, 22(2): 216-224.
  • 9Fattori G, Riboldi M, Desplanques M, et al.. Automated fiducial localization in CT images based on surface processing and geometrical prior knowledge forradiotherapy applications[J[. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2191-2199.
  • 10Seong J K and Byung K K. Accurate hybrid global self-localization algorithm for indoor mobile robots with two-dimensional isotropic ultrasonic receivers[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(10): 3391-3404.

共引文献143

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部